_Award brainliest if helped!
Mechanical Advantage = Force by Hammer / Force by Nail = 160/40 = 4
Answer:
The potential difference is 121.069 V
Solution:
As per the question:
Diameter of the cylinder, d = 9.0 cm = 0.09 m
Length of the cylinder, l = 40 cm = 1.4 m
Average Resistivity, 
Current, I = 100 mA = 0.1 A
Now,
To calculate the potential difference between the hands:
Cross- sectional Area of the Cylinder, A = 
Resistivity is given by:



Now, using Ohm's Law:
V = IR

Answer:
The hollow cylinder rolled up the inclined plane by 1.91 m
Explanation:
From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

moment of inertia, I, of a hollow cylinder = ¹/₂mr²
substitute for I in the equation above;


given;
v₁ = 5.0 m/s
vf = 0
g = 9.8 m/s²

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m
Answer:
Explanation:
Rx = -28.2 units
Ry = 19.6 units
magnitude of R = √ [( - 28.2 )² + ( 19.6 ) ]
= √ ( 795.24 + 384.16 )
= 34.34 units
If θ be the angle measured counterclockwise from the +x-direction
Tanθ = 19.6 / - 28.2 = -0.695
θ = 180 - 34.8
= 145.2° .
Explanation:
Given that,
Number of turns in the coil, N = 100
Area of the coil, A = 100 cm² = 0.01 m²
It is placed at an angle of 70°.
Magnetic field, B = 0.1 Wb/m²
We need to find the magnetic flux through the coil and the emf is induced in the coil after 10⁻³ s.
Magnetic flux is given by :

So, the magnetic flux through the coil is 0.1 Wb.
Emf induced in the coil is :

So, 34V of emf is induced in the coil.