Answer:
5
Step-by-step explanation:

<em>G</em><em>CF</em><em> </em><em>=</em><em> </em><em>5</em>
R^4-2(r-14)>0
r^4-2r+28>0
r^4-2r+28=0
There is no real solution but there is all real numbers
:)
Answer: 32 and 42
Step-by-step explanation:
5j +12
j= 4
j = 6
5(4) + 12
5 times 4 = 20
20 + 12 = 32
5(6) + 12
5 times 6 = 30
30 + 12 = 42
Answer:
y = -3/2 x +13
Step-by-step explanation:
We want our line to be perpendicular to
y = 2/3 x -1
The slope of this line is 2/3 (since it is written in the form y = mx+b and m is the slope)
Perpendicular lines have negative reciprocal slopes
m = -(3/2)
The slope of our new line is -3/2
We can use point slope form of the equation
y-y1 - m (x-x1)
y - 7 = -3/2 (x-4)
Distribute
y-7 = -3/2x +6
Add 7 to each side
y-7+7 = -3/2 x +6+7
y = -3/2 x +13
Answer:
a. 12 feet b. 12 feet 0.5 inches c. 8.33 %
Step-by-step explanation:
a. How far out horizontally on the ground will it protrude from the building?
Since the rise to run ratio is 1:12 and the building is 12 inches off the ground, let x be the horizontal distance the ramp protrudes.
So, by ratios rise/run = 1/12 = 12/x
1/12 = 12/x
x = 12 × 12
x = 144 inches
Since 12 inches = 1 foot, 144 inches = 144 × 1 inch = 144 × 1 foot/12 inches = 12 feet
b. How long should the ramp be?
The length of the ramp, L is gotten from Pythagoras' theorem since the ramp is a right-angled triangle with sides 12 inches and 144 inches respectively.
So, L = √(12² + 144²)
= √[12² + (12² × 12²)]
= 12√(1 + 144)
= 12√145
= 12 × 12.042
= 144.5 inches
Since 12 inches = 1 foot, 144.5 inches = 144 × 1 inch + 0.5 inches = 144 × 1 foot/12 inches + 0.5 inches = 12 feet 0.5 inches
c. What percent grade is the ramp?
The percentage grade of the ramp = rise/run × 100 %
= 12 inches/144 inches × 100 %
= 1/12 × 100 %
= 0.0833 × 100 %
= 8.33 %