![y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\ y''(0)=20\cdot0^3=0](https://tex.z-dn.net/?f=y%3Dx%5E5-3%5C%5C%20y%27%3D5x%5E4%5C%5C%5C%5C%205x%5E4%3D0%5C%5C%20x%3D0%5C%5C%200%5Cin%20%5B-2%2C1%5D%5C%5C%5C%5C%20y%27%27%3D20x%5E3%5C%5C%5C%5C%0Ay%27%27%280%29%3D20%5Ccdot0%5E3%3D0)
The value of the second derivative for

is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of

is always positive for

. That means at

there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval
![[-2,1]](https://tex.z-dn.net/?f=%5B-2%2C1%5D)
.
The function

is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.
Answer:
y=4x^3−10x+128.805299
Step-by-step explanation:
Xmin:
-10
Xmax:
10
Ymin:
-10
Ymax:
10
Answer: B
Step-by-step explanation:
<span>The best answer for this question would be 70, 70, 70. This is because the question does not specify which two numbers will be taken to create the maximum. If, for example it was known that the first two numbers would be added, we would do better with 105, 105, 0 as the first two numbers would then add up to 210.</span>