1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
3 years ago
14

Find the equations for the lines through the point (a,

Mathematics
1 answer:
ozzi3 years ago
4 0
The slope of the perpendicular line  is -1/m.

it passes through the point (a,c) therefore:-

y - c = -1/m(x - a)

y  = -1/m x + a/m + c  answer


Parallel line:-

c = m(a) + b
b = c - ma

y = mx + c - ma    Answer
You might be interested in
Using the Law of Cosines, in triangle DEF, if e=18yd, d=10yd, f=22yd, find measurement of angle D
Ivahew [28]
Check the picture below.

\bf \textit{Law of Cosines}\\ \quad \\
c^2 = {{ a}}^2+{{ b}}^2-(2{{ a}}{{ b}})cos(C)\implies 
c = \sqrt{{{ a}}^2+{{ b}}^2-(2{{ a}}{{ b}})cos(C)}
\\\\\\
\cfrac{{{ a}}^2+{{ b}}^2-c^2}{2{{ a}}{{ b}}}=cos(C)\implies cos^{-1}\left(\cfrac{{{ a}}^2+{{ b}}^2-c^2}{2{{ a}}{{ b}}}\right)=\measuredangle C\\\\
-------------------------------\\\\
\begin{cases}
d=10\\
e=18\\
f=22
\end{cases}\implies cos^{-1}\left(\cfrac{{{ 18}}^2+{{ 22}}^2-10^2}{2(18)(22)}\right)=\measuredangle D

\bf \implies cos^{-1}\left(0.893\overline{93}\right)=\measuredangle D\implies 26.63^o\approx \measuredangle D

7 0
4 years ago
Find an exact value.
Westkost [7]

Answer:

\displaystyle \cos\left(-\frac{7\,\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}.

Step-by-step explanation:

Convert the angle \displaystyle \left(-\frac{7\, \pi}{12}\right) to degrees:

\displaystyle \left(-\frac{7\, \pi}{12}\right) = \left(-\frac{7\, \pi}{12}\right) \times \frac{180^\circ}{\pi} = -105^\circ.

Note, that \left(-105^\circ\right) is the sum of two common angles: \left(-45^\circ\right) and \left(-60^\circ\right).

  • \displaystyle \cos\left(-45^\circ\right) = \cos\left(45^\circ\right) = \frac{\sqrt{2}}{2}.
  • \displaystyle \cos\left(-60^\circ\right) = \cos\left(60^\circ\right) = \frac{1}{2}.
  • \displaystyle \sin\left(-45^\circ\right) = -\sin\left(45^\circ\right) = -\frac{\sqrt{2}}{2}.
  • \displaystyle \sin\left(-60^\circ\right) = -\sin\left(60^\circ\right) = -\frac{\sqrt{3}}{2}.

By the sum-angle identity of cosine:

\cos(A + B) = \cos(A)\cdot \cos(B) - \sin(A) \cdot \sin(B).

Apply the sum formula for cosine to find the exact value of \cos\left(-105^\circ \right).

\begin{aligned}\cos\left(-105^\circ \right) &= \cos\left(\left(-45^\circ\right) + \left(-60^\circ\right)\right) \\ &= \cos\left(-45^\circ\right) \cdot \cos\left(-60^\circ\right)\right) - \sin\left(-45^\circ\right) \cdot \sin\left(-60^\circ\right)\right) \\ &= \frac{\sqrt{2}}{2} \times \frac{1}{2} - \left(-\frac{\sqrt{2}}{2}\right)\times \left(-\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}\end{aligned}.

\displaystyle \left(-\frac{7\, \pi}{12}\right) = \left(-\frac{7\, \pi}{12}\right) \times \frac{180^\circ}{\pi} = -105^\circ. In other words, \displaystyle \left(-\frac{7\, \pi}{12}\right) and \left(-105^\circ\right) correspond to the same angle. Therefore, the cosine of \displaystyle \left(-\frac{7\, \pi}{12}\right)\! would be equal to the cosine of \left(-105^\circ\right)\!.

\displaystyle \cos\left(-\frac{7\,\pi}{12}\right) = \cos\left(-105^\circ\right) = \frac{\sqrt{2} - \sqrt{6}}{4}.

3 0
3 years ago
You have just graduated from college and purchased a car for $8000. Your credit limit is $11,000. Assume that you make no paymen
Angelina_Jolie [31]
<span>assume the graduate put the purchase on his card.thenInitial balance = $8000 on the first statement (+fees and interest charges, if any)That means he owes the card issuer $8000.Credit balance is what the issuer owes the card holder, which is zero
</span> option "c. $8000" is your answer
8 0
4 years ago
Read 2 more answers
Find the ratio a:b-<br><br> 1) 2a=9b<br> 2) a+b=3b<br><br> please explain your work
Alex777 [14]

1) 2a = 9b    ⇒ 2:9

2) a + b = 3b   ⇒   a = 2b   ⇒   1:2

Answers: 2:9  and  1:2

6 0
3 years ago
16.1245155 rounded to the nearest tenth.​
alexandr402 [8]

Answer:16.1

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Estamate 12871+6281+5146 by first rounding each number to the nearest thousand.
    9·1 answer
  • Line segment L N is tangent to circle O at point M and QM is a diameter.
    10·2 answers
  • In a trivia contest, players from teams and work together to earn as many points as possible for their team. Each team can have
    13·1 answer
  • 1. What is (f⋅g)(x)?
    14·1 answer
  • The circumference of a circle is 29x inches. Find the radius.
    11·1 answer
  • Find the sum of -44, -10, and 49​
    15·2 answers
  • Need help please thank you
    13·1 answer
  • Determine type of triangle
    13·2 answers
  • Dasher wrapped 16 of the 54 presents for Christmas.
    9·1 answer
  • Fill in the missing numbers in this table NEED ASAP PLEASE ANYONE
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!