What u have to tell us what to do
This is an ideal gas problem. The gas inside the balloon is considered ideal. Ideal gas equation is a function pressure, temperature, amount and volume. Note: amount is constant since the balloon ins closed. Pressure is maintained constant since the walls are flexible. Ideal gas equation is: PV=nRT. Put all constant in one side and variables in one.
P/nR=T/V. To find the answer to the question equate the constants of both situation
T1/V1=T2/V2
(25+273.15)/3=(x+273.15)/2
x=-74.38 degC
MM=97.10 that’s the answer
no sefdrcdftrgfkjj jhhhgfd
Answer:
Mass of aluminium in sample = 3.591 g ≅ 3.6 grams
Explanation:
Given that, A sample of aluminum absorbs 50.1 J of heat, upon which the temperature of the sample increases from 20.0°C to 35.5°C.
the specific heat of aluminum is 0.900 J/g- °C
The relation between heat absorbed and change in temperature is given by, Q = msΔT.
where Q = heat absorbed
m = mass of the substance
s = specific heat of substance
ΔT = change in temperature
Now, in our case, Q = 50.1 J ; s = 0.900 J/g- °C; ΔT= 35.5-20 = 15.5°C
⇒ m = 
⇒ m =
= 3.591 g ≅ 3.6 g
⇒ m ≅ 3.6 g