Answer:
The temperatures of the objects must be different
Explanation:
if heat is flowing between two objects, then the objects must be at different temperatures.
Answer:
Metal oxides are compounds composed of metal ions and oxide ions. Nonmetal oxides are compounds composed of nonmetal atoms and oxygen atoms. The main difference between metal oxides and non metal oxides is that metal oxides are basic compounds whereas nonmetal oxides are acidic compounds.
Explanation:
have a great day ahead
tC
If the spoons touch, no heat will flow among the spoons because they are already in thermal equilibrium with each other. This is hinted by the statement "they are at room temperature" which means they all have the same temperature. Heat only flows when there is a difference in temperature.<span>
The answer will be </span><span>C. No heat will flow among the spoons
</span><span>
®PLEASE MARK AS BRAINLIEST TO HELP ME LEVEL UP®</span>
Explanation:
Given parameters:
Initial volume V1 = 200cm³
Initial temperature = 60°C
Final temperature = 120°C
Unknown:
Final volume = ?
Solution:
According to Charles law, at constant pressure, the volume of a given mass of gas is directly proportional to temperature.
mathematically;

1 and 2 are the initial and final states
V is the volume and T is the temperature
convert the temperature to kelvin
T1 = 60 + 273 = 333K
T2 = 120 + 273 = 393K
Input the parameters;

final volume is 236cm³
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly
This question asks to compare the energy emitted by a piece of iron at T = 603K with the energy emitted by the same piece at T = 298K.
Then you need to use the Stefan–Boltzmann Law
That law states that energy emitted (E) is proportional to fourth power of the to the absolute temperature (T), this is E α T^4 (the sign α is used to express proportionallity.
Then E (603) / E (298) = [603K / 298K]^4 = 16,8
Which meand that the Energy emitted at 603 K is 16,8 times the energy emitted at 298K.