The process of flask becoming cold is due to endothermic reaction.
Answer: Option B
<u>Explanation:</u>
So two kinds of heat transfer can be possible in any chemical reaction. If the sample is considered as system and the sample container is considered as the surrounding, then heat transfer can occur between them.
If the heat is transferred from the surrounding to the system , then it is an endothermic reaction. And in those cases, the sample holder will be becoming colder. This is because the heat from the surrounding that is the container will be utilized to complete the reaction.
While when there is transfer of heat from the system to surrounding , it will be exothermic reaction and the beaker will be getting hot in this process. So in the present case, the container is becoming cold because of occurrence of endothermic process.
Answer:
b. There is no definite top to the atmosphere. The pressure and density gradually get smaller as the altitude gets larger.
Explanation:
There is no specific top of the atmosphere. It varies from place to place. But generally it is considered to be 480 kilometers thick. But majority of its thickness is limited to 16 km only above earth surface. The pressure and density gradually get smaller as the altitude gets larger. The air pressure at sea level is 14.7 pounds per square inch and it decreases to 10 pounds per square inch at a height of 3 kilometers. From the above discussion we say that option B is correct
Answer:the hose would explode and you would mess the water system out
Explanation:
Answer:

Explanation:
The kinetic energy possessed by particles will be

where,
M is the mass of the particle (7920938.3 MeV/c²)
c is the speed of the light
Also,
energy of the proton particle = 
where,
v is the velocity
m_p is the mass of the proton (938.3 MeV/c²)
since the energy is equal
thus,

or
![1-\frac{v^2}{c^2}=[\frac{2m_p}{M}]^2](https://tex.z-dn.net/?f=1-%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%3D%5B%5Cfrac%7B2m_p%7D%7BM%7D%5D%5E2)
substituting the values in the above equation, we get
![1-\frac{v^2}{c^2}=[\frac{2\times 938.3 }{7920}]^2](https://tex.z-dn.net/?f=1-%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%3D%5B%5Cfrac%7B2%5Ctimes%20938.3%20%7D%7B7920%7D%5D%5E2)
or

Hence,<u> the speed necessary for the specified condition to occur is </u><u>0.9714 times the speed of the light</u>