Answer:
10.2 metres
Explanation:
Given that a ball is projected at an initial speed of 20.0 meter per second making an angle of 45.0 with horizontal. What is the maximum height it will reach?
Solution
To get the maximum height, let us use the formula
V^2 = U^2 sin^2ø - 2gH
At maximum height V = 0
U^2 sin^2ø = 2gH
Substitute all the parameters into the formula
20^2 ( sin 45 )^2 = 2 × 9.8 × H
400 × 0.5 = 19.6 H
Make H the subject of formula
H = 200 / 19.6
H = 10.204 metres.
Therefore, the maximum height reached by the projected ball is 10.2 metres.
<u>We are given:</u>
Mass of the Steelhead(m) = 9 kg
Velocity of the Steelhead(v) = 16 m/s
<u>Calculating the Kinetic Energy:</u>
KE = 1/2mv²
replacing the variables
KE = 1/2 * 9 * (16)²
KE = 1152 Joules
To solve this problem we will apply the principles of energy conservation. The kinetic energy in the object must be maintained and transformed into the potential electrostatic energy. Therefore mathematically


Here,
m = mass (At this case of the proton)
v = Velocity
k = Coulomb's constant
= Charge of each object
r= Distance between them
Rearranging to find the second charge we have that

Replacing,


Therefore the charge on the sphere is 3.6531nC
Answer:
I'm fairly sure that the answer is "100 m/s"
Explanation:
Fnet=ma
a=Fnet/m
a=4 N / 0.040 kg
a=100 m/s
please check my work before you submit, i don't wanna let cha down :)
Answer:
Explanation:
The formula for centripetal acceleration is
and filling in:
and solving for r:
gives us that
r = 79.6 m