Answer:
a) 16 N
b) 2.13 m/s²
Explanation:
Draw a free body diagram of the tv stand. There are four forces:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force P pulling right.
Sum of forces in the y direction:
∑F = ma
N − mg = 0
N = mg
The net force in the x direction is:
∑F = P − Nμ
∑F = P − mgμ
∑F = 25 N − (7.5 kg) (10 m/s²) (0.12)
∑F = 16 N
Net force equals mass times acceleration:
∑F = ma
16 N = (7.5 kg) a
a = 2.13 m/s²
You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
<span>D. density is your answer</span>
Earthquakes occur in the crust or upper mantle, from the earth’s surface to about 400 miles below the surface. But the very deepest earthquakes only occur at subduction zones where cold crustal rock is being pushed deep into the earth. In California, earthquakes are almost all in the top 15 miles of the crust, except in northern California along the Cascadia Subduction Zone, which extends into Oregon, Washington, and British Columbia.(tectonic plate boundaries)
yes, just like human skin. The bigger you grown the more your skin stretches, I a fish is bigger their skin will stretch leading to broad stripes.