1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
3 years ago
7

3/4 3√128. simplify?kindly​

Mathematics
2 answers:
iris [78.8K]3 years ago
7 0

Answer:

3 ∛2

Step-by-step explanation:

3/4 ∛128

=> 3/4 ∛(2)^7 .

=> 3/4 ∛(2)^3 . (2)^3 x2

=> 3/4 . 2.2 ∛2

=>3 ∛2

lisov135 [29]3 years ago
6 0

Answer:  3∛2

<u>Step-by-step explanation:</u>

First, factor 128 .... you need three common factors to bring one on the outside of the radical.

\dfrac{3}{4}\sqrt[3]{128} \\\\\\=\dfrac{3}{4}\sqrt[3]{4\cdot 4\cdot 4\cdot 2} \\\\\\=\dfrac{3}{4}\cdot 4\sqrt[3]{2} \\\\\\=\large\boxed{3\sqrt[3]{2} }

You might be interested in
What is 5/9 rounded to the nearest half
mash [69]

Answer:

1

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
write the product of the expression 5^4 * 5^-7 using a positive exponent, then write the product using a negative exponent
pav-90 [236]

Answer with positive exponent = \left(\frac{1}{5}\right)^3 or  \frac{1}{5^3}

Answer with negative exponent = 5^{-3}

===========================================================

Explanation:

The rule we use is

a^b*a^c = a^{b+c}

If we multiply two exponential expressions with the same base, then we add the exponents.

The base for each is 5. The exponents 4 and -7 add to -3.

This means

5^4*5^{-7} = 5^{4+(-7)} = 5^{-3}

To convert to a positive exponent, we apply the reciprocal to the base. We go from 5, aka 5/1, to 1/5.

So, 5^{-3} = \left(\frac{1}{5}\right)^3 = \frac{1^3}{5^3} = \frac{1}{5^3}

3 0
2 years ago
Write a complete two-column proof for the following information. Hint: Use the Angle Addition Theorem and the fact that a line i
kramer

Answer:

Step-by-step explanation:

Given: m∠1 = 62° and lines t and l intersect

Prove: m∠4 = 62°

Proof:

Statement                                        Reason

m∠1 = 62°                                         Given

m∠1 , m∠2 are supplementary       t is a straight line hence linear pair.

m∠4 , m∠2 are supplementary       r is a straight line hence linear pair.

Angle 2=180-62 = 118                      Definition of supplementary angles

Angle 4 = 180-118 =62                     -do-

Angle 1 = Angle 4                            Equality property

Hence proved

6 0
3 years ago
Read 2 more answers
Michelle bought 4 gallons of grape juice and 5 gallons of apple juice for a party. What is the ratio of gallons of apple juice t
ivann1987 [24]

Answer: 4 to 5

5to 4

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Is 9/31 an irrational number
    9·2 answers
  • HELP MEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
    13·1 answer
  • point a has the coordinates(2,5) point B has the coordinates (6,17) how long is segment ab in simplified radical form
    9·1 answer
  • Simplify √20 x √ 43 x √18
    9·1 answer
  • Find the equation
    5·1 answer
  • Help get brainiest if u help
    15·1 answer
  • Kailynn has been on a roll, and solving 5 math problems every 2.5 minutes. At this rae, how many problem will she solve in 30 mi
    14·1 answer
  • A school fundraiser needs to raise a total of $1000. The students are selling artwork for $25 a piece. They have already raised
    8·1 answer
  • a. Morning rain showers dropped 1/3 of an inch of rain. Later that day, another storm passed through and dropped 1/8 inch of rai
    9·1 answer
  • Unknown Angle Problems (with algebra)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!