Where is the cube I don't see any picture?
The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
Explanation:
It is given that,
Voltage of the battery, V = 12 V
Current, I = 100 ampere-hours
Energy stored is given by the product of power and time taken. So,

P is the power, 

P = 1200 watts
This power can be used for 1 hour or 3600 seconds
Energy, 
E = 4320000 J
So, the energy stored in this battery is 4320000 J. Hence, this is the required solution.
Iron...................... hope this helpes
The complete sentence is:
In a third class lever, the distance from the effort to the fulcrum is SMALLER the distance from the load/resistance to the fulcrum.
In fact, in a third class lever, the fulcrum is on one side of the effort and the load/resistance is on the other side, so the effort is located somewhere between the two of them. This means that the distance effort-fulcrum is smaller than the distance load-fulcrum.