The X and Y angles created by lines intersection in the pictures are 18° and 54°.
Based on the picture, angle ∠MON is a right angle hence it has an 90° angle. We then know that the ∠MOA is 72°. Because angle ∠MOA lies within the angle ∠MON, hence we can write the following formula:
∠MON = ∠MOA +∠AON = 90°
∠MON = 72° + ∠AON = 90°
∠AON = 18° ... (i)
If we focus on the line CD being intersected by the line AB, hence we can conclude that the angles form by this intersection will follow these rules:
∠AOD = ∠BOC
∠AOC = ∠BOD
∠AOD + AOC = 180°
∠BOC + ∠BOD = 180°
Based on the picture, we know that:
∠BOC = x
∠AOC = ∠MOA + ∠MOC
∠AOC = 72° + y ...(ii)
∠AOD = ∠AON + ∠NOD
∠AOD = 18° +2x
∠BOC = 3x ... (iii)
Because we already know that ∠BOC = AOD, hence we could rewrite the formula into:
∠BOC = ∠AOD
3x = 18° + 2x
x = 18° ... (iv)
To find the value of y, we need to focus on angle ∠AOC. Based on the previous calculations and formulas, we know that:
∠AOC + ∠BOC = 180° ... (v)
Input equations (ii) and (iv) into (v)
∠AOC + ∠BOC = 180°
(72° + y) + 3x = 180°
72° + y + 3(18°) = 180°
126° + y = 180°
y = 54° ... (vi)
Learn more about the angles by lines intersection here: brainly.com/question/2077876?referrer=searchResults
#SPJ1
To find the inverse of a function, we make the independent variable the subject of the formula.
Thus, the inverse of the given function is evaluated as follows.

From the work show, it can be seen that Talib's work is correct.
Events
• A: an even number is rolled in the first time
,
• B: a number greater than 3 is rolled the second time
The probability of rolling an even number is:

The probability of rolling a number greater than 3 is:

Events A and B are independent, then the probability of one happening after the other is:
Greetings from Brasil...
Let's apply the given formula:
A = (1/2)·B·H
The base of this polygon (in this case, the triangle) is B
B = X² - 2X + 6
The height of this polygon is H and is H
H = X + 4
Applying these values (B and H) in the given formula.....
A = (1/2)·B·H
A = (1/2)·(X² - 2X + 6)·(X + 4)
A = (1/2)·(X³ + 2X² - 2X + 24)
A = (X³/2) + X² - X + 12
OR
A = (X³ + 2X² - 2X + 24)/2