The answer is "Deflate because volume is directly proportional to temperature"
The conclusions that are specifically supported by the data in Table 1 is that An increase in the number of rubber bands causes an increase in the acceleration. That is option D.
<h3>What is acceleration?</h3>
Acceleration is defined as the rate at which the velocity of a moving object changes with respect to time which is measured in meter per second per second (m/s²).
From the table given,
Trial 1 ----> 1 band = 0.24m/s²
Trial 2 ----> 2 bands = 0.51 m/s²
Trial 3 ----> 3 bands = 0.73 m/s²
Trial 4 -----> 4 bands = 1.00 m/s²
This clearly shows that increase in the number of bands increases the acceleration of one brick that was placed on the cart.
This is because increasing the number of rubber bands has the effect of doubling the force leading to an effective increase in velocity of the moving cart.
Learn more about acceleration here:
brainly.com/question/25749514
#SPJ1
Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!
Net force
As it's negative the box will move left
Answer:
The spring constant is 3750 N/m
Explanation:
Use the following two relationships:
(Work) = (Force) x (Displacement)
(Force) = (Spring constant) x (Displacement)
=>
(Spring constant) = (Force) / (Displacement) = (Work) / (Displacement)^2
(Spring constant) = 6.0 kg.(m^2/s^2) / 0.0016 m^2 = 3750 N/m
The spring constant is 3750 N/m