ΔU =
-Wint
Consdier the work of of
interaction is W =m*g*h - equation -1
and the Potential energy U.
Final Potential energy Uf =0
, And the Initial Potential Energy Ui =m*g*h
<span>Now we will write the
equation for a Change in Potential energy ΔU,</span>
ΔU = Uf
- Ui
= 0-m*g*h
<span> ΔU = -m*g*h --Equation 2</span>
Now compare the both equation
<span>Wint = -ΔU</span>
we can rewrite the above
equation
ΔU =
-W.
<span>So our Answer is ΔU = -W. .</span>
<span> </span>
It would be funny because . I will not be good
Answer:
<h3> 1.40625m/s²</h3>
Explanation:
Using the equation of motion expressed as v = u+gt where;
v is the final velocity of the ball
u is the initial velocity
g is the acceleration due to gravity
t is the time taken
Given
u = 9m/s
v = 0m/s
t = 6.4s
Required
acceleration due to gravity g
Since the rock is thrown up, g will be a negative value.
v = u+(-g)t
0 = 9-6.4g
-9 = -6.4g
6.4g = 9
divide both sides by 6.4
6.4g/6.4 = 9/6.4
g = 1.40625m/s²
Hence the acceleration due to gravity on the planet is 1.40625m/s²
Answer:
1. Energy = 2880 Joules.
2. Energy = 60 Joules.
3. Quantity of charge = 120 Coulombs.
Explanation:
Given the following data;
1. Voltage = 12 Volts
Current = 0.5 Amps
Time, t = 8 mins to seconds = 8 * 60 = 480 seconds
To find the energy;
Power = current * voltage
Power = 12 * 0.5
Power = 6 Watts
Next, we find the energy transferred;
Energy = power * time
Energy = 6 * 480
Energy = 2880 Joules
2. Charge, Q = 4 coulombs
Potential difference, p.d = 15V
To find the total energy transferred;
Energy = Q * p.d
Energy = 4 * 15
Energy = 60 Joules
3. Voltage = 6 Volts
Current = 1 Amps
Time = 2 minutes to seconds = 2 * 60 = 120 seconds
To find the quantity of charge;
Quantity of charge = current * time
Quantity of charge = 1 * 120
Quantity of charge = 120 Coulombs
Answer:
Resistance in the flash tube, 
Explanation:
It is given that,
Speed of the bullet, v = 500 m/s
Distance between one RC constant, d = 1 mm = 0.001 m
Capacitance, 
The time constant of RC circuit is given by :

R is the resistance in the flash tube
..........(1)
Speed of the bullet is given by total distance divided by total time taken as :




Equation (1) becomes :


So, the resistance in the flash tube is
. Hence, this is the required solution.