Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>
Answer:
<em>63.44 rad/s</em>
<em></em>
Explanation:
mass of bullet = 3.3 g = 0.0033 kg
initial velocity of bullet
= 250 m/s
final velocity of bullet
= 140 m/s
loss of kinetic energy of the bullet = 
==>
= 70.785 J
this energy is given to the stick
The stick has mass = 250 g =0.25 kg
its kinetic energy = 70.785 J
from
KE = 
70.785 = 
566.28 = 
= 23.79 m/s
the stick is 1.5 m long
this energy is impacted midway between the pivot and one end of the stick, which leaves it with a radius of 1.5/4 = 0.375 m
The angular speed will be
Ω = v/r = 23.79/0.375 =<em> 63.44 rad/s</em>
Answer:
a = 64 ft / s²
Explanation:
The force in a spring is given by Hooke's law
F = -k x
Let's use the initial data to calculate the spring constant
k = F / x
Reduscate to the English system
x = 3 in (1foot/12 in) =0.25 foot
k = 0.3 / 0.25
k = 1.2 lb / foot
Now we can use Newton's second law
F = ma
a = F / m
a = -k x / m
m = w / g
m = 0.3 / 32 = 0.009375
x= 6 in (1foot /12 in)= 0.5 foot
a = - 1.2 0.5 / 0.009375
a = 64 ft / s²