Answer:
1st – Place the film canister on the <u>scale</u>.
2nd – Slide the large <u>weight </u>to the right until the arm drops below the line and then move it back one notch.
3rd – Repeat this process with the <u>top</u> weight. When the arm moves below the line, back it up one groove.
4th – Slide the <u>small </u>weight on the front beam until the <u>lines</u> match up.
5th – Add the amounts on each beam to find the total <u>mass </u>to the nearest tenth of a gram.
Explanation:
The triple beam balance is an instrument that is used in measuring the mass of substances to a very high degree of precision. The reading error is given by ±0.05 grams. The triple beam balance as the name implies has three beams that measure substances of different mass levels.
The beams are categorized as small, medium, and large. There is a balance on which the substance to be weighed is placed directly upon. To use this measuring device, the procedures mentioned above are followed.
Hotter ocean tempatures mean more moisture in the dense air mass
solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m
Answer: 1.55 x 10⁴ Nm²c^-1
Explanation: The electric flux, electric field intensity and area are related by the formulae below.
Φ= EAcosθ,
Where Φ= electric flux (Nm²c^-1)
E =electric field intensity (N/m²)
A = Area (m²)
θ= this is angle between the planar area and the magnetic flux
For our question E=3.80KN/c= 3800 N/c
A= 0.700 x 0.350= 0.245m²
θ= 0° ( this is because the electric field was applied along the x axis, thus the electric flux will be parallel to the area).
Hence Φ= 3800 x 0.245 x cos(0)
= 3800 x 0.245 x 1 (value of cos 0° =1)
= 1.55 x 10⁴ Nm²c^-1
Thus the electric field is 1.55 x 10⁴ Nm²c^-1
Answer: Strength of magnet and distance from magnetic material
Explanation:
The potential energy of a magnet is determined by the strength of the magnet and the distance between a magnet and another magnet or a magnetic material. Magnetic materials are materials that would be attracted when brought close to a magnet, example of magnetic materials are most metals.