O2 mol O2 2 mil CO2 O1molO2
The limiting reactant is determined by the supply and stoichiometric equation.
<h3>Limiting reactants</h3>
They are reactants that are limited in availability, and thus, determine how far reactions can go in terms of producing products.
In a reaction involving magnesium and hydrochloric acid to produce hydrogen gas as follows:

The number of moles of HCl is twice that of Mg. Thus, if both reactants are supplied in the required proportion, no reactant will be limiting.
However, if the number of moles of HCl supplied is not up to twice that of Mg, HCl will become limiting. Also, if the amount of Mg supplied is not equal to half of that of HCl supplied, Mg will be limiting.
More on limiting reactants can be found here: brainly.com/question/14225536
#SPJ1
Answer: Radon-222 is generated in the uranium series from the alpha decay of radium-226, which has a half-life of 1600 years. Radon-222 itself alpha decays to polonium-218 with a half-life of approximately 3.82 days, making it the most stable isotope of radon. Its final decay product is stable lead-20
Are you answering a worksheet or searching for one?
If you're searching for one here are some decent ones
1: https://www.eslprintables.com/cinema_and_television/movies/film_questionnaire_on_Pay_it__148601/
2:
https://www.eslprintables.com/cinema_and_television/movies/Film_Pay_if_Forward_164829/
Answer:
0.350 g of iron
Explanation:
Step 1: Given data
Mass of iron (m): 350 mg
Step 2: Convert the mass of iron to milligrams
In order to convert the mass of iron from grams to milligrams we need a conversion factor. In this case, the conversion factor is 1 g = 1,000 mg.
350 mg Fe × 1 g Fe/1,000 mg Fe = 0.350 g Fe
350 milligrams of iron is equal to 0.350 grams of iron. We conserve the 3 significante figures of the original data.