Erm i’m afraid we need the list
<span>The balanced chemical equation for this reaction is:
2NaOH (aq)+H2SO4 (aq) → Na2SO4 (aq)+2H2O (l)
According to question, 60 ml of NaOH solution was used for neutralizing 40 ml of 0.50M H2SO4.
The no. of moles of H2SO4 is calculated using the equation:
mol solute = (molarity) (L soln)
mol H2SO4 = 0.50 M x 0.040 L = 0.02 moles of H2SO4
As per the equation, the number of moles of NaOH used is:
0.02 moles of H2SO4 (2 mol NaOH) (1 mol H2SO4) = 0.04 moles of NaOH
Therefore, using the given volume of NaOH, the concentration or molarity of NaOH can be calculated using the formula :
Molarity = mol solute/L soln = 0.04 mol NaOH/0.06 L = 0.67 M
Therefore, the concentration of NaOH is 0.67 M.</span>
Answer: b.) they tend to lose electrons to gain stability
Explanation:
Answer:
A) { + } Ge-Se { -}
B) { + } Ge-Br { - }
C) { - } Br-Se { + }
Explanation:
The (-)ive sign shall be placed for the atom with higher electronegativity, while the other atom will be electropositive.
a) Electronegativity of Ge = 2.01
Electronegativity of Se = 2.55
{ + } Ge-Se { -}
b) Electronegativity of Ge = 2.01
Electronegativity of Br = 2.95
{ + } Ge-Br { - }
c) Electronegativity of Br = 2.95
Electronegativity of Se = 2.55
{ - } Br-Se { + }