Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
9a-ab+5b
9(2)-(2)(7)+5(7)
18-14+35
39
Answer:
y=5x-1 I think because the snd option doesn't make sense but you should try y =5x-1
<O = 16 degrees vertical angles are equal
<O + 4x+90 = 180 DC is a straight line
16 +4x +90 = 180
106 +4x = 180
4x =74
x =18.5
16 +90 +2y= 180 DC is a straight line
106+2y=180
2y = 74
y= 37
Answer : y=37
x=18.5
Answer:
-2
Step-by-step explanation:
The coefficient is the number in front of the variable.