Answer:
The value is ![P(A | W) = 0.941](https://tex.z-dn.net/?f=P%28A%20%7C%20W%29%20%3D%20%200.941%20)
Step-by-step explanation:
From the question we are told that
The probability that the student knows the answer to the question is ![P(A) = 0.8](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%200.8)
The probability that that the student will guess is ![P(G) = 0.2](https://tex.z-dn.net/?f=P%28G%29%20%3D%20%200.2)
The probability that that the student get the correct answer given that the student guessed is ![P(W /G) = 0.25](https://tex.z-dn.net/?f=P%28W%20%2FG%29%20%3D%20%200.25)
Here W denotes that the student gets the correct answer
Generally it a certain fact that if the student knows the answer he would get it correctly
So the probability the the student got answer given that he knows it is
![P(W | A) = 1](https://tex.z-dn.net/?f=P%28W%20%7C%20A%29%20%3D%20%201)
Generally from Bayes theorem we can mathematically evaluate the probability that the student knows the answer given that he got it correctly as follows
![P(A | W) = \frac{ P(A) * P(W | A )}{ P(A) * P(W | A) + P(G) * P(W| G)}](https://tex.z-dn.net/?f=P%28A%20%7C%20W%29%20%3D%20%20%5Cfrac%7B%20P%28A%29%20%2A%20%20P%28W%20%7C%20A%20%29%7D%7B%20P%28A%29%20%2A%20%20P%28W%20%7C%20A%29%20%2B%20P%28G%29%20%2A%20P%28W%7C%20G%29%7D)
=> ![P(A | W) = \frac{ 0.8 * 1}{ 0.8 * 1+ 0.2 * 0.25}](https://tex.z-dn.net/?f=P%28A%20%7C%20W%29%20%3D%20%20%5Cfrac%7B%200.8%20%2A%20%201%7D%7B%200.8%20%2A%20%201%2B%200.2%20%2A%200.25%7D)
=> ![P(A | W) = 0.941](https://tex.z-dn.net/?f=P%28A%20%7C%20W%29%20%3D%20%200.941%20)