Step-by-step explanation:
Z 00m
336"083"2553
(wZE2XQ) are
6x+5x-4=2x-8~~~First we simplify(add 6x and 5x)
11x-4=2x-8~~~Now add 4 to both sides
+4 +4
11x=2x-4~~~~Remove 2x from both sides now.
-2x -2x
9x=-4~~~~Now divide by 9x
÷9x ÷9x
x= -4/9
Answer:
B
Step-by-step explanation:
B Rounded to nearest ten thousand
Answer:
(x, y) = (40, 30)
Step-by-step explanation:
A graphing calculator can show you the solution to this system of equations is (x, y) = (40, 30). That is the point of intersection where the two lines cross.
__
An algebraic solution can be found by using the substitution method. An expression for y can be found using the second equation:
y = 110 -2x . . . . . . subtract 2x from both sides
Using this in the first equation gives ...
3x -4(110 -2x) = 0 . . . . substitute for y
11x = 440 . . . . . . . . . simplify, add 440
x = 40 . . . . . . . . . . divide by 11
y = 110 -2(40) = 30
The solution is (x, y) = (40, 30).
Answer:
Solution
p = {-3, 1}
Step-by-step explanation:
Simplifying
p2 + 2p + -3 = 0
Reorder the terms:
-3 + 2p + p2 = 0
Solving
-3 + 2p + p2 = 0
Solving for variable 'p'.
Factor a trinomial.
(-3 + -1p)(1 + -1p) = 0
Subproblem 1
Set the factor '(-3 + -1p)' equal to zero and attempt to solve:
Simplifying
-3 + -1p = 0
Solving
-3 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '3' to each side of the equation.
-3 + 3 + -1p = 0 + 3
Combine like terms: -3 + 3 = 0
0 + -1p = 0 + 3
-1p = 0 + 3
Combine like terms: 0 + 3 = 3
-1p = 3
Divide each side by '-1'.
p = -3
Simplifying
p = -3
Subproblem 2
Set the factor '(1 + -1p)' equal to zero and attempt to solve:
Simplifying
1 + -1p = 0
Solving
1 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '-1' to each side of the equation.
1 + -1 + -1p = 0 + -1
Combine like terms: 1 + -1 = 0
0 + -1p = 0 + -1
-1p = 0 + -1
Combine like terms: 0 + -1 = -1
-1p = -1
Divide each side by '-1'.
p = 1
Simplifying
p = 1
Solution
p = {-3, 1}