Answer:
Force = -1161.6 Newton
Explanation:
Given the following data;
Initial velocity, u = 44m/s
Distance ,s = 12.5cm to m = 12.5/100 = 0.125m
Mass = 0.15kg
To find the acceleration;
We would use the third equation of motion;
V ² = U² + 2as
0² = 44² + 2*a*0.125
0 = 1936 + 0.25a
0.25a = -1936
a = -1936/0.25
Acceleration, a = -7744m/s2
Force = mass * acceleration
Substituting into the equation, we have;
Force = 0.15 * (-7744)
Force = -1161.6 Newton
The value of its force is negative because the glove decreases the velocity of the ball.
Answer:
Explanation:
A 40kg child throw stone of 0.5kg
At a direction of 5m/s
Recoil can be calculated using recoil of a gun formula
m_1•v_1 + m_2•v_2
m_1•v_1 = -m_2•v_2
The negative sign show that the momentum of the boy is directed oppositely to that of the stone
m_1 Is mass of boy
v_1 is the recoil velocity of the boy
m_2 is mass of stone
v_2 is the velocity of stone
Then,
m_1•v_1 = -m_2•v_2
40•v_1 = -0.5 × 5
40•v_1 = -2.5
v_1 = -2.5 / 40
v_1 = -0.0625 m/s
The recoil velocity of the boy is 0.0625 m/s
The kilogram is the Standard International System of Units unit of mass. It is defined as the mass of a particular international prototype made of platinum-iridium and kept at the International Bureau of Weights and Measures.
Answer:
Explanation:
Work
Other units Foot-pound, Erg
In SI base units 1 kg⋅m2⋅s−2
Derivations from other quantities W = F ⋅ s W = τ θ
Dimension M L2 T−2
Idk if this is what u are looking for but i hope this help.:)
Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.