1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
4 years ago
5

This is the math problem 150-4[3+9/4-1•(14-11) to the 2nd power]

Mathematics
2 answers:
nydimaria [60]4 years ago
6 0
150-4[3+9/4-1*(14-11)^2]
150-4[12/3*(3)^2]
150-4[4*3^2]
150-4[4*9]
150-4*36
150-144
6
(I think)
poizon [28]4 years ago
6 0

Answer:

Final result :

 165

Step by step solution :

Step  1  :

Equation at the end of step  1  :

            9

 150-(4•((3+—)-(1•32)))

            4

Step  2  :

           9

Simplify   —

           4

Equation at the end of step  2  :

                    9    

 150 -  (4 • ((3 +  —) -  32))

                    4    

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  4  as the denominator :

         3     3 • 4

    3 =  —  =  —————

         1       4  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

3 • 4 + 9     21

—————————  =  ——

    4         4

Equation at the end of step  3  :

              21    

 150 -  (4 • (—— -  32))

              4    

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  4  as the denominator :

         32     32 • 4

   32 =  ——  =  ——————

         1        4  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

21 - (32 • 4)     -15

—————————————  =  ———

      4            4

Equation at the end of step  4  :

             -15

 150 -  (4 • ———)

              4

Step  5  :

Final result :

 165

Processing ends successfullyFinal result :

 165

Step by step solution :

Step  1  :

Equation at the end of step  1  :

            9

 150-(4•((3+—)-(1•32)))

            4

Step  2  :

           9

Simplify   —

           4

Equation at the end of step  2  :

                    9    

 150 -  (4 • ((3 +  —) -  32))

                    4    

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  4  as the denominator :

         3     3 • 4

    3 =  —  =  —————

         1       4  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

3 • 4 + 9     21

—————————  =  ——

    4         4

Equation at the end of step  3  :

              21    

 150 -  (4 • (—— -  32))

              4    

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  4  as the denominator :

         32     32 • 4

   32 =  ——  =  ——————

         1        4  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

21 - (32 • 4)     -15

—————————————  =  ———

      4            4

Equation at the end of step  4  :

             -15

 150 -  (4 • ———)

              4

Step  5  :

Final result :

 165

Processing ends successfully

Step-by-step explanation:

You might be interested in
Each side of a square is increased by 3 inches. The perimeter of the new square is 40 inches more than twice the length of the s
RUDIKE [14]

Length of side of new square is 17 inches

Step-by-step explanation:

  • Step 1: Let the length of the side of the old square be x. Then length of side of new square = x + 3 and Perimeter of new square = 40 + 2x

Perimeter of a square = 4 × side

⇒ 4(x + 3) = 40 + 2x

⇒ 4x + 12 = 40 + 2x

⇒ 2x = 28

⇒ x = 14 inches

  • Step 2: Find length of side of the new square

⇒ x + 3 = 17 inches

6 0
3 years ago
(4y-4)=(10x+65) answer please?
icang [17]

Answer:

Step-by-step explanation:

4y-4=10x+65, this can be expressed in many ways...

4y-10x-4-65=0

4y-10x-69=0 or

4y=10x+69

y=(10x+69)/4

3 0
3 years ago
Mar in was a bat and hit 7 out 8 balls. How can you find his batting precentage
777dan777 [17]
Divide 7 by 8 then multiply what you get by 100.
7 0
3 years ago
Read 2 more answers
Calculate the area of the equilateral triangle using the formula for area of a regular polygon, and compare it to Bianca’s answe
8090 [49]

The calculated areas of both are the same instead of using the different formulas that are 43. 5 squared unit.

<h3>What is the area of a regular polygon?</h3>

The area of the polygon is the product of half of the apothem of the triangle and perimeter.

The area of the polygon = \frac{1}{2} \times h \times p

The side of the triangle is 10 units.

Apothem of an equilateral triangle

s = \frac{\sqrt{3} a}{6}

s= \sqrt{3} \times 10/6

s = 2.88

Here, a is the side of the triangle.

Thus the apothem of the triangle is 2.9 units.

The perimeter of the equilateral triangle is equal to the three times the sides.

Perimeter of the equilateral triangle ,

P = 3(10)

P = 30

Therefore, the perimeter of the equilateral triangle is 30 units.

The area of the equilateral triangle-

The area of the polygon = \frac{1}{2} \times h \times p

A = 1/2 \times 2.9 \times 30

A = 43.5

Thus the area of the equilateral triangle is 43.5 squared units.

Therefore, The calculated areas of both are the same instead of using the different formulas.

Learn more about the apothem;

brainly.com/question/10580427

7 0
2 years ago
Read 2 more answers
HELP ASAP PLEASE!!!!
DENIUS [597]

Answer:

q=(1,5) t=(-2,3)r=(3,-1)s=(0,0)

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • What is the solution for 75&lt;-5(4x+1)
    12·2 answers
  • A. 28.8<br> B. 22.5<br> C. 27.2<br> D. 26.8
    7·1 answer
  • Nadia says the hypotenuse of this right triangle has a length of 73 because the Pythagorean theorem states that
    14·1 answer
  • Solve the following inequality. Then place the correct answer in the box provided. Answer in terms of a mixed number.
    13·2 answers
  • a quarter weighs approximately 5.7 grams and a dime weighs approximately 2.3 grams. A bag with 57 quarters and some dimes weighs
    6·1 answer
  • Find the square feet and the number of ceiling tiles for the following room sizes. 1. 17 x 23 2. 10 x 12 3. 70 x 100
    6·1 answer
  • 41x0x3 what property is this
    7·2 answers
  • Evaluate the expression 2v^3•v^0
    11·1 answer
  • Please help me with this Algebra 1 question!
    7·1 answer
  • Describe a similarity transformation that maps the preimage to the images
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!