1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
3 years ago
5

This is the math problem 150-4[3+9/4-1•(14-11) to the 2nd power]

Mathematics
2 answers:
nydimaria [60]3 years ago
6 0
150-4[3+9/4-1*(14-11)^2]
150-4[12/3*(3)^2]
150-4[4*3^2]
150-4[4*9]
150-4*36
150-144
6
(I think)
poizon [28]3 years ago
6 0

Answer:

Final result :

 165

Step by step solution :

Step  1  :

Equation at the end of step  1  :

            9

 150-(4•((3+—)-(1•32)))

            4

Step  2  :

           9

Simplify   —

           4

Equation at the end of step  2  :

                    9    

 150 -  (4 • ((3 +  —) -  32))

                    4    

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  4  as the denominator :

         3     3 • 4

    3 =  —  =  —————

         1       4  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

3 • 4 + 9     21

—————————  =  ——

    4         4

Equation at the end of step  3  :

              21    

 150 -  (4 • (—— -  32))

              4    

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  4  as the denominator :

         32     32 • 4

   32 =  ——  =  ——————

         1        4  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

21 - (32 • 4)     -15

—————————————  =  ———

      4            4

Equation at the end of step  4  :

             -15

 150 -  (4 • ———)

              4

Step  5  :

Final result :

 165

Processing ends successfullyFinal result :

 165

Step by step solution :

Step  1  :

Equation at the end of step  1  :

            9

 150-(4•((3+—)-(1•32)))

            4

Step  2  :

           9

Simplify   —

           4

Equation at the end of step  2  :

                    9    

 150 -  (4 • ((3 +  —) -  32))

                    4    

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  4  as the denominator :

         3     3 • 4

    3 =  —  =  —————

         1       4  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

3 • 4 + 9     21

—————————  =  ——

    4         4

Equation at the end of step  3  :

              21    

 150 -  (4 • (—— -  32))

              4    

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  4  as the denominator :

         32     32 • 4

   32 =  ——  =  ——————

         1        4  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

21 - (32 • 4)     -15

—————————————  =  ———

      4            4

Equation at the end of step  4  :

             -15

 150 -  (4 • ———)

              4

Step  5  :

Final result :

 165

Processing ends successfully

Step-by-step explanation:

You might be interested in
The equation of line s is y=1/3x-3
kirza4 [7]
Lol what do I answer here
4 0
3 years ago
The equation y 10x describes the amount of money Sandra earns, where x is the number of hours she
tester [92]

Answer:

a) $10 per hour

b) Sandra

Step-by-step explanation:

<u>Complete Question:</u>

<em>The equation y 10x describes the amount of money Sandra earns, where x is the number of hours she  works and y is the amount of money she earns </em>

<em>The table shows the amount of money Susan cams for different numbers of hours worked</em>

<em>Susan's Earnings </em>

<em>Time (h)           Money Earned</em>

<em>5                              40</em>

<em>8                              64                </em>

<em>10                             80</em>

<em>(a) How much money does Sandra eam per hour? Show your work </em>

<em>(b) Who earns more per hour? Justify your answer</em>

<em />

<em />

<u>Answer:</u>

a)

y = 10x is sandra's equation. To find her hourly rate, we need to find how much she earns in "1" hour. Since x is hours, we plug in x = 1 and find y (which is her pay).

y = 10x

y = 10(1)

y = 10

$10 is Sandra's hourly rate.

b)

To find who earns more per hour, we need to find the hourly rate of Susan as well from the table. Then compare.

5 hours = $40 so per hour is 40/5 = 8

8 hours is 64, so per hour 64/8 = 8

10 hours is 80, so 80/10 = 8

The table is justified at $8 per hour.

We know Sandra earns $10/hr and Susan earns $8 per hour. So Sandra earns more per hour.

4 0
2 years ago
Hi, I need help with this story problem.
Trava [24]

Answer: 7.5 cups of sugar.

Step-by-step explanation:

Add all of the above:

2+1.5+0.5+3+1.5= <u>8.5 cups of sugar</u>

<u></u>

Since Zach only needs 1 cup of sugar, subtract 1 from 8.5.

Therefore, your answer is <u>7.5 cups of sugar.</u>

3 0
3 years ago
What is the common difference for this arithmetic sequence?<br> -5, -1, 3, 7, 11, ...
shutvik [7]
It’s 4

7-11= 4
3-7= 4
and so on

Hope it helps:)
3 0
3 years ago
What is the equation of the line that passes through the points (−2, 1) and (1, 10)?
Viktor [21]

Answer:

3x - y = -7

Step-by-step explanation:

y = mx + b

m = deltay/deltax

m = (10 - 1)/[( 1 - (-2)]

m = 9/3 = 3

y = 3x + b

From (-2 | 1) we see that when x = -2, y = 1

Placing into the equation, in order to find b (y-intercept)

y = 3x + b

1 = 3(-2) + b

b = 7

y = 3x + 7 or 3x - y = -7

6 0
3 years ago
Other questions:
  • Mr johnson sells erasers for 3 dollars each he sold 96 last week and sold 204 erasers this week about how much morr mone did he
    12·1 answer
  • At a firm, ten entry-level employees earn $40,000 a year, 6 junior-level employees earn $60,000 a year, and 3 managers earn $80,
    15·1 answer
  • Complex roots problem
    13·1 answer
  • Help Please I don't understand these
    5·1 answer
  • What is the approximate volume of a cone with a height of 9 ft and radius of 3 ft?
    9·2 answers
  • What is the image of N for a 300° counterclockwise rotation about the center of the regular hexagon? Will give brainiest only if
    15·1 answer
  • Graph g(x), where f(x) = 2x − 5 and g(x) = f(x + 1).
    10·2 answers
  • Combine like terms: 7x^2−5x^3+8x^2−6x^3
    9·1 answer
  • 10x - 9y = 24 i need help solvinv for y and i need the work to see what i be doing wrong .
    12·1 answer
  • Please help me on this question as soon as possible….
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!