Answer:
1108.808511
Step-by-step explanation:
Answer:
Hello! who are you tell me ?
Answer:
2nd choice
Step-by-step explanation:
![\bf f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}}\\\\ f(x)=&{{ A}} \left|{{ B }}x+{{ C}} \right|+{{ D}} \\\\ --------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%26%7B%7B%20%20A%7D%7D%28%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%29%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Ay%3D%26%7B%7B%20%20A%7D%7D%28%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%29%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%5Csqrt%7B%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%7D%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%28%5Cmathbb%7BR%7D%29%5E%7B%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%7D%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%20sin%5Cleft%28%7B%7B%20B%20%7D%7Dx%2B%7B%7B%20%20C%7D%7D%20%20%5Cright%29%2B%7B%7B%20%20D%7D%7D%5C%5C%5C%5C%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%20%5Cleft%7C%7B%7B%20B%20%7D%7Dx%2B%7B%7B%20%20C%7D%7D%20%20%5Cright%7C%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%5C%5C%0A--------------------%5C%5C%5C%5C)
![\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbullet%20%5Ctextit%7B%20stretches%20or%20shrinks%20horizontally%20by%20%20%7D%20%7B%7B%20%20A%7D%7D%5Ccdot%20%7B%7B%20%20B%7D%7D%5C%5C%5C%5C%0A%5Cbullet%20%5Ctextit%7B%20flips%20it%20upside-down%20if%20%7D%7B%7B%20%20A%7D%7D%5Ctextit%7B%20is%20negative%7D%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%20%5Cright.%20%20%5Ctextit%7Breflection%20over%20the%20x-axis%7D%0A%5C%5C%5C%5C%0A%5Cbullet%20%5Ctextit%7B%20flips%20it%20sideways%20if%20%7D%7B%7B%20%20B%7D%7D%5Ctextit%7B%20is%20negative%7D%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%20%5Cright.%20%20%5Ctextit%7Breflection%20over%20the%20y-axis%7D)
![\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbullet%20%5Ctextit%7B%20horizontal%20shift%20by%20%7D%5Cfrac%7B%7B%7B%20%20C%7D%7D%7D%7B%7B%7B%20%20B%7D%7D%7D%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%5Cright.%20if%5C%20%5Cfrac%7B%7B%7B%20%20C%7D%7D%7D%7B%7B%7B%20%20B%7D%7D%7D%5Ctextit%7B%20is%20negative%2C%20to%20the%20right%7D%5C%5C%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%5Cright.%20%20if%5C%20%5Cfrac%7B%7B%7B%20%20C%7D%7D%7D%7B%7B%7B%20%20B%7D%7D%7D%5Ctextit%7B%20is%20positive%2C%20to%20the%20left%7D%5C%5C%5C%5C%0A%5Cbullet%20%5Ctextit%7B%20vertical%20shift%20by%20%7D%7B%7B%20%20D%7D%7D%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%5Cright.%20if%5C%20%7B%7B%20%20D%7D%7D%5Ctextit%7B%20is%20negative%2C%20downwards%7D%5C%5C%5C%5C%0A%5Cleft.%20%5Cqquad%20%20%5Cright.%20if%5C%20%7B%7B%20%20D%7D%7D%5Ctextit%7B%20is%20positive%2C%20upwards%7D%5C%5C%5C%5C%0A%5Cbullet%20%5Ctextit%7B%20period%20of%20%7D%5Cfrac%7B2%5Cpi%20%7D%7B%7B%7B%20%20B%7D%7D%7D)
with that template in mind, let's see,
![\bf f(x)=|x| \implies \begin{array}{lllccll} f(x)=&1|&1x&+0|&+0\\ &\uparrow &\uparrow &\uparrow &\uparrow \\ &A&B&C&D \end{array}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%7Cx%7C%20%5Cimplies%20%5Cbegin%7Barray%7D%7Blllccll%7D%0Af%28x%29%3D%261%7C%261x%26%2B0%7C%26%2B0%5C%5C%0A%26%5Cuparrow%20%26%5Cuparrow%20%26%5Cuparrow%20%26%5Cuparrow%20%5C%5C%0A%26A%26B%26C%26D%0A%5Cend%7Barray%7D)
so, to shift it to the right by 2 units, simply set C = 2.
to stretch it by 2, set A = 1/2.
the smaller A is, the wider it opens, the larger it is, the more it shrinks.
There are two solutions.
.. (3, 2)
.. (0.2, -3.6)
_____
If you're choosing possibilities from a list, trying them in the equations usually gives quick results.