Answer:
Mass of the oil drop, 
Explanation:
Potential difference between the plates, V = 400 V
Separation between plates, d = 1.3 cm = 0.013 m
If the charge carried by the oil drop is that of six electrons, we need to find the mass of the oil drop. It can be calculated by equation electric force and the gravitational force as :


, e is the charge on electron
E is the electric field, 


So, the mass of the oil drop is
. Hence, this is the required solution.
Answer:
<h2>100 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 25 × 4
We have the final answer as
<h3>100 J</h3>
Hope this helps you
Answer:
1: a all of the above
2: b earth tones
3: b doors
4: c industrial
5: d door levers
6: a walk in shower
7: b cork
8: a basic counter tops that are easily accessible
Explanation:
I took the test and got 100%
This is a Doppler effect. Generally, if you move to a frequency source, you would detect an increase in frequency and when you move away from a source you would detect a decrease.
For this question, before you pass them, you are actually approaching them, so you would hear a higher frequency than the constant 300 Hz they are playing at.
Using the condensed formula:
f ' = ((v <u>+</u> vd)/(v <u>+</u> vs)) * f
Where: vd = Velocity of the detector.
vs = Velocity of the frequency source.
v = Velocity of sound in air.
f ' = Apparent frequency.
f = Frequency of source.
v = 343 m/s, vd = detector = 27.8 m/s, vs = velocity of the source =0. (the flautists are not moving).
f = 300 Hz.
There would be an overall increase in frequency, so we maintain a plus at the numerator and a minus at the denominator.
f ' = ((v + vd)/(v - vs)) * f
f ' = ((343+ 27.8)/(343 - 0)) * 300
= (370.8/343)* 300 = 324.3
Therefore frequency before passing them = 324.3 Hz.
Cheers.
False. It does repeat itself