Answer:
0.6826 = 68.26% probability that you have values in this interval.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
X~N(8, 1.5)
This means that 
What is the probability that you have values between (6.5, 9.5)?
This is the p-value of Z when X = 9.5 subtracted by the p-value of Z when X = 6.5. So
X = 9.5



has a p-value of 0.8413.
X = 6.5



has a p-value of 0.1587
0.8413 - 0.1587 = 0.6826
0.6826 = 68.26% probability that you have values in this interval.
Answer:
n>6
Step-by-step explanation:
you need to find the n variable by dividing
Step-by-step explanation:
location
of the distribution.
Answer:

Step-by-step explanation:
3 ln(p + q) − 2 ln(q) − 7 ln(p)
=ln(p+q)^3- ln(q)^2-ln(p)^7
= ln(p+q)^3-{ln(q)^2+ln(p)^7}
=ln(p+q)^3-ln(q)^2*(p)^7
=ln{ (p+q)^3÷(q)^2*(p)^7}
=