The equation has one extraneous solution which is n ≈ 2.38450287.
Given that,
The equation;

We have to find,
How many extraneous solutions does the equation?
According to the question,
An extraneous solution is a solution value of the variable in the equations, that is found by solving the given equation algebraically but it is not a solution of the given equation.
To solve the equation cross multiplication process is applied following all the steps given below.

The roots (zeros) are the x values where the graph intersects the x-axis. To find the roots (zeros), replace y
with 0 and solve for x. The graph of the equation is attached.
n ≈ 2.38450287
Hence, The equation has one extraneous solution which is n ≈ 2.38450287
For more information refer to the link.
brainly.com/question/15070282
Well, there are 3 feet in a yard. So, 3ft=1yrd. Multiply the length value by 3. You could also multiply 3 by the # of yards (or in this situation, 8) Is that good enough?
Carlos made the mistake that he did not combine like terms (3 x and 2 x) properly and did not use addition property of equality.
<u>Step-by-step explanation:</u>
Carlos did the work as 3 x + 2 x - 6 = 24
We need to find his mistake that he made in above given.
Here, he did not add the like terms (3 x and 2 x)
3 x + 2 x = 5 x
Therefore, his work should be
5 x - 6 = 24
Also, he did not use addition property of equality. It means the equation remains same even though the same number gets added on both sides. It would be
5 x - 6 = 24
+ 6 = + 6
-----------------------
5 x = 30
Dividing 30 by 5, we get answer as '6'. Hence,
= 6
So, stated the above two are the mistakes found in carlos work.
Answer:
f[g(4)] = 4
Step-by-step explanation:
Given table:

f[g(4)] is a composite function.
When calculating <u>composite functions</u>, always work from inside the brackets out.
Begin with g(4): g(4) is the value of function g(x) when x = 4.
From inspection of the given table, g(4) = -6
Therefore, f[g(4)] = f(-6)
f(-6) is the value of function f(x) when x = -6.
From inspection of the given table, f(-6) = 4
Therefore, f[g(4)] = 4