Answer:
3,6,12,24.48,96,192
Step-by-step explanation:
Y = x² - 4x + 4
y = 2x - 4
Find intersection of L and C:
x² - 4x + 4 = 2x - 4
x² - 6x + 8 = 0
<span> (x - 2)(x - 4) = 0
x = 2 or x = 4
When x = 2 , y = 2(2) - 4 = 0
When x = 4, y = 2(4) - 4 = 4
Points of intersection = A(2, 0) and B(4, 4)
Find the length of AB:
</span>
<span>
Answer: 4.47 units</span>
Answer:
g = 55
f = 55
h = 55
Step-by-step explanation:
g = 180 - 25 = 55
this is because angle on a straight line is equal to 180 degrees
f = 55
alternate angles are equal. f alternates g
h = 55
opposite angels are equal
Answer:
1)-
How to solve your question
Your question is
4(4−72)−9(5+2)
4(4y-7y^{2})-9(5y+2)4(4y−7y2)−9(5y+2)
Simplify
1
Rearrange terms
4(4−72)−9(5+2)
4({\color{#c92786}{4y-7y^{2}}})-9(5y+2)4(4y−7y2)−9(5y+2)
4(−72+4)−9(5+2)
4({\color{#c92786}{-7y^{2}+4y}})-9(5y+2)4(−7y2+4y)−9(5y+2)
2
Distribute
4(−72+4)−9(5+2)
{\color{#c92786}{4(-7y^{2}+4y)}}-9(5y+2)4(−7y2+4y)−9(5y+2)
−282+16−9(5+2)
{\color{#c92786}{-28y^{2}+16y}}-9(5y+2)−28y2+16y−9(5y+2)
3
Distribute
−282+16−9(5+2)
-28y^{2}+16y{\color{#c92786}{-9(5y+2)}}−28y2+16y−9(5y+2)
−282+16−45−18
-28y^{2}+16y{\color{#c92786}{-45y-18}}−28y2+16y−45y−18
4
Combine like terms
2)
−17y+17z+24
See steps
Step by Step Solution:

STEP1:Equation at the end of step 1
((24 - 4 • (5y - 6z)) + 3y) - 7z
STEP2:
Final result :
-17y + 17z + 24
−282+16−45−18
-28y^{2}+{\color{#c92786}{16y}}{\color{#c92786}{-45y}}-18−28y2+16y−45y−18
−282−29−18
-28y^{2}{\color{#c92786}{-29y}}-18−28y2−29y−18
Solution
−282−29−18