Answer:
Step-by-step explanation:
concentration = amount of salt/solution
A) Initial concentration= 90/1000 = 0.09
Q = quantity of salt
Q(0) = 90 kg
Inflow rate = 8 l/min
Outflow rate = 8 l/min
Solution = 1000 L at any time t.
Salt inflow = 0.045 * 8 per minute
= 0.36 kg per minute
This is mixed and drains from the tank.
Outflow = ![\frac{Q(t)}{1000}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%28t%29%7D%7B1000%7D)
Thus rate of change of salt
Q'(t) = inflow - outflow = ![0.36-\frac{Q(t)}{1000} \\=\frac{360-Q(t)}{1000}](https://tex.z-dn.net/?f=0.36-%5Cfrac%7BQ%28t%29%7D%7B1000%7D%20%5C%5C%3D%5Cfrac%7B360-Q%28t%29%7D%7B1000%7D)
Separate the variables and integrate
![\frac{1000dQ}{360-q(t)} =dt\\-1000 ln |360-Q(t)| = t+C\\ln |360-Q(t)| = -0.001+C'\\360-Q(t) = Ae^{-0.001t} \\Q(t) = 360-Ae^{-0.001t}](https://tex.z-dn.net/?f=%5Cfrac%7B1000dQ%7D%7B360-q%28t%29%7D%20%3Ddt%5C%5C-1000%20ln%20%7C360-Q%28t%29%7C%20%3D%20t%2BC%5C%5Cln%20%7C360-Q%28t%29%7C%20%3D%20-0.001%2BC%27%5C%5C360-Q%28t%29%20%3D%20Ae%5E%7B-0.001t%7D%20%5C%5CQ%28t%29%20%3D%20360-Ae%5E%7B-0.001t%7D)
Use the fact that Q(0) = 90
90 = 360-A
A = 270
So
![Q(t) = 360-270e^{-0.001t}](https://tex.z-dn.net/?f=Q%28t%29%20%3D%20360-270e%5E%7B-0.001t%7D)
B) Q(t) = 360-270e^-0.004 = 91.07784
C) When t approaches infinity, we get
Q(t) tends to 360
So concentration =360/1000 = 0.36