The value of** PR** is **13.04 units**

<h3>Area of a triangle</h3>

The area of a triangle with sides a, b and angle Ф between them is given as **A = 1/2absinФ.**

<h3>Area of △PQR</h3>

Since △PQR is an **inscribed triangle**, the area of △PQR, **A = 1/2PQPRsinP**, where **A = 50** and **P = 36°**

Also in △PQR,** tanP = PQ/PR**

So, making PQ subject of the formula, we have

**PQ = PRtanP**

Substituting the value of PQ into A, we have

A = 1/2PQPRsinP

A = 1/2(PRtanP)PRsinP

**A = 1/2PR²tanPsinP**

<h3>The value of PR</h3>

Making PR subject of the formula, we have

**PR = √(2A/tanPsinP)**

Given that **A = 50 **and **P = 36°**,substituting the values of the variables into the equation, we have

**PR = √(2A/tanPsinP)**

PR = √(2 × 50/tan36°sin36°)

PR = √[100/(0.7265 × 0.8090)]

PR = √[100/0.5878)

PR = √170.13

**PR = 13.04**

So, the value of** PR** is **13.04 units**

Learn more about **inscribed triangles** here:

brainly.com/question/17757837