Find the rectangular coordinates of the point with the polar coordinates (8, 3 divided by 2 pi).
2 answers:
Find the rectangular coordinates of the point with the polar coordinates (8, ).
(r, theta)= (8, 3/2 pi)
r=(x^2 +y^2)^(1/2)
theta= 3/2 pi
x= r(costheta)
y=r(sintheta)
x=8(cos(3/2 pi))
y=8(sin(3/2 pi))
x=8(0)
y=8(-1)
x=0
y=-8
r=((-8)^2+(0)^2)^(1/2)
r=(64+0)^(1/2)
r=8
rectangular coordinates= (0,-8)
You might be interested in
Answer:
I think it might be 24.5
jxjzjdjdksnxjksndjsknejcjsjw
Yes, it depends on what kind of model
Answer:
^7 squroot5^3
Step-by-step explanation:
5x2= 10
7÷ 3= 2.5
Answer:
the answer is D.
Step-by-step explanation:
.............