Answer:
your answer is going to be -158
Step-by-step explanation:
(5)-(3)^2+7×-22=-158
Answer:
Step-by-step explanation:
8
<h3> Learning task 1</h3>
1. <u> </u><u> </u><u>3</u><u>.</u><u> </u><u> </u> 3. <u> </u><u> </u><u>1</u><u>. </u><u> </u>
4. 2
2. <u> </u><u> </u><u> </u><u>5</u><u>.</u><u> </u> 4. <u> </u><u> </u><u>6</u><u>. </u><u> </u>
9. 13
5. <u> </u><u> </u><u> </u><u>3</u><u>. </u> 6. <u> </u><u> </u><u> </u><u>7</u><u>. </u><u> </u>
5. 9
Step by step explanation:
hopefully that's help
Answer:
14
Step-by-step explanation:
7*4*1/2=14
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5