Answer:

Explanation:
Given:
- pressure on the piston,

- diameter of the piston,

- displacement of the piston,

- time taken in the piston displacement,

<u>Now, we find the force on the piston:</u>

where, A = area upon which pressure acts





<u>we know that Power is given as:</u>




Answer:
0.37 m
Explanation:
Given :
Window height,
= 1.27 m
The flowerpot falls 0.84 m off the window height, i.e.
= (1.27 x 0.84 ) m in a time span of
seconds.
Assuming that the speed of the pot just above the window is v then,


![$v=\left(\frac{30}{8}\right) \left[ (1.27 \times 0.84) - \left( \frac{1}{2} \times 9.81 \times \left( \frac{8}{30 \right)^2 \right) \right]}$](https://tex.z-dn.net/?f=%24v%3D%5Cleft%28%5Cfrac%7B30%7D%7B8%7D%5Cright%29%20%5Cleft%5B%20%281.27%20%5Ctimes%200.84%29%20-%20%5Cleft%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%209.81%20%5Ctimes%20%5Cleft%28%20%5Cfrac%7B8%7D%7B30%20%5Cright%29%5E2%20%5Cright%29%20%5Cright%5D%7D%24)
m/s
Initially the pot was dropped from rest. So, u = 0.
If it has fallen from a height of h above the window then,


h = 0.37 m
In step 1, to increase the potential energy, the iron will move towards the electromagnet.
In step 2, to increase the potential energy, the iron will move towards the electromagnet.
<h3>Potential energy of a system of magnetic dipole</h3>
The potential energy of a system of dipole depends on the orientation of the dipole in the magnetic field.

where;
is the dipole moment- B is the magnetic field


Increase in the distance (r) reduces the potential energy. Thus, we can conclude the following;
- In step 1, to increase the potential energy, the iron will move towards the electromagnet.
- In step 2, when the iron is rotated 180, it will still maintain the original position, to increase the potential energy, the iron will move towards the electromagnet.
Learn more about potential energy in magnetic field here: brainly.com/question/14383738