1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
6

During combustion reactions, explain why the energy of the reactants must exceed the total energy of the products​

Physics
1 answer:
maxonik [38]3 years ago
8 0

Answer:

In these reactions the products are higher in energy than the reactants. ... This barrier is due to the fact that to make CO2 and H2O we have to break 4 carbon-hydrogen bonds and some ...

Explanation:

You might be interested in
State guy lussac law
tatuchka [14]

<span>The combined gas law has no official founder; it is simply the incorporation of the three laws that was discovered. The combined gas law is a gas law that combines Gay-Lussac’s Law, Boyle’s Law and Charle’s Law.  Boyle’s law states that pressure is inversely proportional with volume at constant temperature. Charle’s law states that volume is directly proportional with temperature at constant pressure. And Gay-Lussac’s law shows that pressure is directly proportional with temperature at constant volume. The combination of these laws known now as combined gas law gives the ratio between the product of pressure-volume and the temperature of the system is constant. Which gives PV/T=k(constant). When comparing a substance under different conditions, the combined gas law becomes P1V1/T1 = P2V2/T2.</span>

7 0
3 years ago
If we add 50 Joules of thermal energy to a heat engine, and that heat engine does 30 Joules of work, how much thermal energy is
Natalka [10]

Answer:

The correct answer should be

A. 20 Joules

Explanation:

I'm taking the K12 Unit Test: Energy - Part 1 right now

7 0
2 years ago
An 20-cm-long Bicycle Crank Arm. With A Pedal At One End. Is Attached To A 25-cm-diameter Sprocket, The Toothed Disk Around Whic
malfutka [58]

To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.

The angular velocity can be described as

\omega_f = \omega_0 + \alpha t

Where,

\omega_f =Final Angular Velocity

\omega_0 =Initial Angular velocity

\alpha = Angular acceleration

t = time

The relation between the tangential acceleration is given as,

a = \alpha r

where,

r = radius.

PART A ) Using our values and replacing at the previous equation we have that

\omega_f = (94rpm)(\frac{2\pi rad}{60s})= 9.8436rad/s

\omega_0 = 63rpm(\frac{2\pi rad}{60s})= 6.5973rad/s

t = 11s

Replacing the previous equation with our values we have,

\omega_f = \omega_0 + \alpha t

9.8436 = 6.5973 + \alpha (11)

\alpha = \frac{9.8436- 6.5973}{11}

\alpha = 0.295rad/s^2

The tangential velocity then would be,

a = \alpha r

a = (0.295)(0.2)

a = 0.059m/s^2

Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

\omega_f^2=\omega_0^2+2\alpha\theta

Replacing with our values and re-arrange to find \theta,

\theta = \frac{\omega_f^2-\omega_0^2}{2\alpha}

\theta = \frac{9.8436^2-6.5973^2}{2*0.295}

\theta = 90.461rad

That is equal in revolution to

\theta = 90.461rad(\frac{1rev}{2\pi rad}) = 14.397rev

The linear displacement of the system is,

x = \theta*(2\pi*r)

x = 14.397*(2\pi*\frac{0.25}{2})

x = 11.3m

5 0
3 years ago
Two cylindrical resistors are made from the same material. The shorter one has length L, diameter D, and resistance R1. The long
nordsb [41]

Answer:

the resistance of the longer one is twice as big as the resistance of the shorter one.

Explanation:

Given that :

For the shorter cylindrical resistor

Length = L

Diameter = D

Resistance = R1

For the longer cylindrical resistor

Length = 8L

Diameter = 4D

Resistance = R2

So;

We all know that the resistance of a given material can be determined by using the formula :

R = \dfrac{\rho L }{A}

where;

A = πr²

R = \dfrac{\rho L }{\pi r ^2}

For the shorter cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{\rho L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{ 4 \rho L }{\pi \ D   ^2}

For the longer cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{ \rho (8 ) L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{32\rho L }{\pi \ (4 D)   ^2}

R = \dfrac{2\rho L }{\pi \ (D)   ^2}

Sp;we can equate the shorter cylindrical resistor to the longer cylindrical resistor as shown below :

\dfrac{R_s}{R_L} = \dfrac{ \dfrac{ 4 \rho L }{\pi \ D   ^2}}{ \dfrac{2\rho L }{\pi \ (D)   ^2}}

\dfrac{R_s}{R_L} ={ \dfrac{ 4 \rho L }{\pi \ D   ^2}}* { \dfrac  {\pi \ (D)   ^2} {2\rho L}}

\dfrac{R_s}{R_L} =2

{R_s}=2{R_L}

Thus; the resistance of the longer one is twice as big as the resistance of the shorter one.

7 0
2 years ago
You drop two balls from a tower, one of mass m and the other of mass 3m.
neonofarm [45]
The potential energy that the ball has at the top of the tower is its kinetic energy when it hits the ground. The second ball has more potential energy at the top, because you did more work on it to carry it up there. So it has more KE at the bottom. (A)
3 0
3 years ago
Read 2 more answers
Other questions:
  • What’s 3 times 10 to the 8th power divided by 2.45 times 10 to the 9th power
    10·1 answer
  • The thermometer reading 70◦Fis placed in an oven preheated to a constant temperature. Through the glass window in the oven door,
    14·1 answer
  • A 2.44 kg block is pushed 1.55 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle o
    8·1 answer
  • You decide it is time to clean your pool since summer is quickly approaching. Your pool maintenance guide specifies that the chl
    14·1 answer
  • What's an interesting fact about Aristotle?
    11·1 answer
  • ASAP need physics help please:)
    9·1 answer
  • Do you think antiseptic creams and lotions play an important part in our day<br>to day life? ​
    7·2 answers
  • A concave mirror of radius of 30cm produces and image three times in size of the object the distance of the object from the mirr
    15·1 answer
  • Which equation contains only scalar quantities
    12·1 answer
  • In 1656, the Burgmeister (mayor) of the town of Magdeburg, Germany, Otto Von Guericke, carried out a dramatic demonstration of t
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!