X = -3.
The distance from p(-9, 0, 0) is
d = sqrt((x+9)^2 + y^2 + z^2)
The distance from q(3,0,0) is
d = sqrt((x-3)^2 + y^2 + z^2)
Let's set them equal to each other.
sqrt((x+9)^2 + y^2 + z^2) = sqrt((x-3)^2 + y^2 + z^2)
Square both sides, then simplify
(x+9)^2 + y^2 + z^2 = (x-3)^2 + y^2 + z^2
x^2 + 18x + 81 + y^2 + z^2 = x^2 - 6x + 9 + y^2 + z^2
18x + 81 = - 6x + 9
24x + 81 = 9
24x = -72
x = -3
So the desired equation is x = -3 which defines a plane.
Answer:the z score is - 1
Step-by-step explanation:
Assuming a normal distribution for the delivery time of sandwiches by Sammy's Sandwich Shop. We would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = delivery times
u = mean delivery time
s = standard deviation
From the information given,
u = 25 minutes
s = 2 minutes
We want to determine the z-score for the number of sandwiches delivered in less than 23 minutes. It becomes
z = (23 - 25)/2 = - 1
The decimal representation of 1/11 is 0.090909...
The pair of digits '09' repeat forever.
If you start counting the digits after the decimal point,
the odd ones are all zero, and the even ones are all 9 .
So the 44th digit after the decimal point is 9 .
Answer:
62.5
All you do is divide 5 by 8 and you get this .625 move the decimal over two spots to the right and you get 62.5%
Answer:
Player II should remove 14 coins from the heap of size 22.
Step-by-step explanation:
To properly answer this this question, we need to understand the principle and what it is exactly is being asked.
This question revolves round a game of Nim
What is a game of Nim: This is a strategic mathematical game whereby, two opposing sides or opponent take turns taking away objects from a load or piles. On each turn, a player remove at least an object and may remove any number of objects provided they all come from the same heap/pile.
Now, referring back to the question, we should first understand that:
22₂ = 1 0 1 1 0
19₂= 1 0 0 1 1
14₂= 0 1 1 1 0
11₂= 0 1 0 1 1
and also that the “bit sums” are all even, so this is a balanced game.
However, after Player I removes 6 coins from the heap of size 19, Player II should remove 14 coins from the heap of size 22.