The answer is 5 hope this helps
The Answer To Your Question Would Be 12
Answer:
G = 15 - 5.50 ÷ .75
or
G = 9.50 ÷ .75
Step-by-step explanation:
Answer:
IS NOT; ARE NOT
Step-by-step explanation:
Given: ![\[ \begin{bmatrix} \frac{1}{4} & \frac{1}{4}\\ \\-1 & \frac{-1}{2} \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%5C%5C%20%20%20%20%5C%5C-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%5Cend%7Bbmatrix%7D%5C%5D)
and ![\[A = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\\\ -1 & \frac{-1}{2} \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5BA%20%3D%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%5C%5C%20%20%20%20-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%20%5Cend%7Bbmatrix%7D%5C%5D)
We say two matrices
and
are inverses of each other when
where
is the identity matrix.
![\[I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5BI%20%3D%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%201%20%26%200%5C%5C%20%20%20%200%20%26%201%20%20%5Cend%7Bbmatrix%7D%5C%5D)
So, for
and
to be inverses of each other, we should have
.
Let us calculate
.
![\[\begin{bmatrix} -2 & -1 \\ 8 & 2 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%20-2%20%26%20-1%20%5C%5C%208%20%26%202%20%5Cend%7Bbmatrix%7D%5C%5D)
![\[\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\\\ -1 & \frac{-1}{2}\end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%5C%5C%20-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%5Cend%7Bbmatrix%7D%5C%5D)
![\[\begin{bmatrix}\frac{1}{2} & 0 \\0 & 0 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%5Cfrac%7B1%7D%7B2%7D%20%26%200%20%5C%5C0%20%26%200%20%5Cend%7Bbmatrix%7D%5C%5D)
This is clearly not equal to the identity matrix. So we conclude that the matrices are not inverses of each other.
Answer:
2ab + c²
Step-by-step explanation:
Please find attached a diagram of square 5
Area of a triangle = 1/2 x ( base x height)
(1/2 x (a xb) ) x 4 = 2ab
The Pythagoras theorem : a² + b² = c²
where a = length
b = base
c = hypotenuse
a² + b² = c²
a² + 2ab+ b² = 2ab + c²