Answer:
Step-by-step explanation:
hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii bot

Answer:

Step-by-step explanation:
We are given that a differential equation

We have to find the general solution of given differential equation


Compare with

We get


I.F=





Answer:
OPTION B - 41
Step-by-step explanation:
An expression is given and the corresponding values for the expression are also given. We have to substitute the given values to arrive at the answer.
The given expression is: x + 3y + z.
Also given: x = 4, y = 5, z = 22.
Substitute these values in the above expression, we get:
4 + 3(5) + 22 = 4 + 15 + 22 = 41.
∴ x + 3y + z = 41
Answer:

f(x) = 4 when x is 8
Step-by-step explanation:
Domain is the set of x values that make the function defined. Allowed x values for the function (mapping).
The Range is the set of y values that make the function defined. Allowed y values for the function (mapping).
- Whenever we need to find f(a), suppose, then we look for "a" in the domain and see its corresponding value mapping in the range.
- Whenever we will be given a value for f(x) = a, suppose, and we have to find "x", we look at the value a in the range and find corresponding x value in the domain.
Firstly, we need f(4), so we look for "4" in domain and see which number it corresponds to in range.
That is 
Thus,

Next,
We want "x" value that gives us a "y" value of 4. We look for "4" in the range and see which value it corresponds to. That is "8". So,
f(8) = 4
--------------------------------------------------------------------
Ratio Given
--------------------------------------------------------------------
Apple : Strawberry
4 : 5
--------------------------------------------------------------------
Find difference in parts
--------------------------------------------------------------------
5 - 4 = 1
--------------------------------------------------------------------
Find Number of strawberry cakes
--------------------------------------------------------------------
1 part = 24 cakes
5 parts = 24 x 5 = 120
--------------------------------------------------------------------
Find number of apple cakes
--------------------------------------------------------------------
1 part = 24 cakes
4 parts = 24 x 4 = 96
--------------------------------------------------------------------
Total number of cakes
--------------------------------------------------------------------
120 + 96 + 144 = 360
--------------------------------------------------------------------
Percentage of cranberry cakes
--------------------------------------------------------------------
144/360 x 100 = 40%
--------------------------------------------------------------------
Answer: 40% of the cakes are cranberry cakes
--------------------------------------------------------------------