1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
9

Help plz. I'll mark brainliest

Mathematics
1 answer:
Vera_Pavlovna [14]3 years ago
6 0
1. rule = r - 12 (number = 25)
2. rule = a + 34 (number = 43) 
3. rule = s - 5 (number = 20)
4. rule = b + 16 (number = 32)
5. rule = w + 3 (number = 9)
6. rule = n + 9 (number = 42)

7. 15 - n when n = 9 would be 15 - 9, and your answer would be 6.

8.
"32 more than a number d" implies add d to 32, so your answer is C. 32 + d
You might be interested in
Help please?!?!?!?!?!?!?
nadezda [96]

Answer:

Choice D is  correct answer.

Step-by-step explanation:

We have given two function.

f(x) =2ˣ+5x  and g(x)  = 3x-5

We have to find the addition of given two function.

(f+g)(x) =  ?

The formula to find the addition, we have

(f+g)(x) = f(x) + g(x)

Putting given values in above formula, we have

(f+g)(x) =   (2ˣ+5x)+(3x-5)

(f+g)(x) =   2ˣ+5x+3x-5

Adding like terms, we have

(f+g)(x) =   2ˣ+8x-5 which is the answer.

6 0
3 years ago
In a survey 9 out of 15 named math as their favorite class. express this rate as a decimal
ZanzabumX [31]
0.6 is 9/15 as a decimal.
3 0
3 years ago
Each problem below gives the endpoints of a segment. Find the coordinates of the midpoints of each segment. A.(5, 2) and (11, 14
kvv77 [185]

The midpoints are (8,3) and (6.5,6).

<u>Step-by-step explanation</u>:

Midpoint formula = ((x1+x2)/2 , (y1+y2)/2)

(x1,y1) = (5,2)

(x2,y2) = (11,4)

Midpoint = ((5+11)/2 , (2+4)/2)

⇒ ((16/2) , (6/2))

⇒ (8,3)

(x1,y1) = (3,8)

(x2,y2) = (10,4)

Midpoint = ((3+10)/2 , (8+4)/2)

⇒ ((13/2) , (12/2))

⇒ (6.5,6)

8 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
What is an equivalent ratio for 2 gallons and 3 quarts
In-s [12.5K]
The equivalent is 2/3.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Is the equation x=-5-y and 2+y=-x+3 coincident, intersecting, or parallel
    6·1 answer
  • PLEASE ANSWER ASAP! *PICTURE ATTACHED*
    13·1 answer
  • the volume of a candle is 8 cubic inches . what is the volume of a similar candle that is larger by a scale factor of 1.5
    6·2 answers
  • The graph of the function f(x)=−|2x| is translated 4 units down.
    15·1 answer
  • X<br>81** *34*=246<br><img src="https://tex.z-dn.net/?f=81x%20%2B%201%20%2B%203%7B4x%20%7D%20%3D%20246" id="TexFormula1" title="
    5·1 answer
  • A rectangle measures 12 cm by 4 cm what is the area
    8·1 answer
  • Estimate the solution for 632.97
    8·1 answer
  • Solve for x: 8x2 + 64x = 0
    10·2 answers
  • jill and kyle get paid per project. jill is paid a project fee of $25 plus $10.50 per hour. kyle is paid a project fee of $18 pl
    7·1 answer
  • .......................
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!