Answer:
(a) The 5-hour decay factor is 0.5042.
(b) The 1-hour decay factor is 0.8720.
(c) The amount of caffeine in Chase's body 2.39 hours after consuming the drink is 149.112 mg.
Step-by-step explanation:
The amount of caffeine in Chase's body decreases exponentially.
The 10-hour decay factor for the number of mg of caffeine is 0.2542.
The 1-hour decay factor is:

(a)
Compute the 5-hour decay factor as follows:

Thus, the 5-hour decay factor is 0.5042.
(b)
The 1-hour decay factor is:

Thus, the 1-hour decay factor is 0.8720.
(c)
The equation to compute the amount of caffeine in Chase's body is:
A = Initial amount × (0.8720)<em>ⁿ</em>
It is provided that initially Chase had 171 mg of caffeine, 1.39 hours after consuming the drink.
Compute the amount of caffeine in Chase's body 2.39 hours after consuming the drink as follows:
![A = Initial\ amount \times (0.8720)^{2.39} \\=[Initial\ amount \times (0.8720)^{1.39}] \times(0.8720)\\=171\times 0.8720\\=149.112](https://tex.z-dn.net/?f=A%20%3D%20Initial%5C%20amount%20%5Ctimes%20%280.8720%29%5E%7B2.39%7D%20%5C%5C%3D%5BInitial%5C%20amount%20%5Ctimes%20%280.8720%29%5E%7B1.39%7D%5D%20%5Ctimes%280.8720%29%5C%5C%3D171%5Ctimes%200.8720%5C%5C%3D149.112)
Thus, the amount of caffeine in Chase's body 2.39 hours after consuming the drink is 149.112 mg.
Answer:
a. The empirical rule.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed(bell-shaped) random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
So the correct answer is:
a. The empirical rule.
<span>
<span>first off your answer is 21.90 and the step by step i wrote it for you:) Finding the
square root of a number is the inverse
operation of squaring that number. Remember, the square of a number
is that number times itself. </span>
The perfect
squares are the squares of the whole numbers.
The square root
of a number, n, written below is the number that gives n when multiplied by
itself.
</span> <span>Many mathematical
operations have an inverse, or opposite, operation. Subtraction is the opposite
of addition, division is the inverse of multiplication, and so on. Squaring,
which we learned about in a previous lesson (exponents),
has an inverse too, called "finding the square root." Remember, the
square of a number is that number times itself. The perfect squares are the
squares of the whole numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 … </span>
The square root
of a number, n, written
<span>
is the number that gives n when multiplied by itself. For example,</span>
<span>because
10 x 10 = 100</span>
Examples
Here are the
square roots of all the perfect squares from 1 to 100.
Finding square
roots of of numbers that aren't perfect squares without a calculator
1. Estimate
- first, get as close as you can by finding two perfect square roots your
number is between.
2. Divide -
divide your number by one of those square roots.
3. Average -
take the average of the result of step 2 and the root.
<span>4. Use the result
of step 3 to repeat steps 2 and 3 until you have a number that is accurate
enough for you.
</span>
Example:
Calculate the square root of 10 ()
to 2 decimal places.
<span>1. Find
the two perfect square numbers it lies between.
</span>
<span><span>Solution:
</span><span>32
= 9 and 42 = 16, so
lies between 3 and 4.</span></span>
<span>2. Divide
10 by 3. 10/3 = 3.33 (you can round off your answer)</span>
<span>3. Average
3.33 and 3. (3.33 + 3)/2 = 3.1667</span>
<span>Repeat step
2: 10/3.1667 = 3.1579</span><span>Repeat step 3: Average 3.1579 and 3.1667. (3.1579 + 3.1667)/2 = 3.1623</span>
Try the answer
--> Is 3.1623 squared equal to 10? 3.1623 x 3.1623 = 10.0001
If this is accurate
enough for you, you can stop! Otherwise, you can repeat steps 2 and 3.
<span>Note:
There are a number of ways to calculate square roots without a calculator.
This is only one of them.</span>
<span><span>
</span>
</span>
<span>
<span />Example:
Calculate the square root of 10 ()
to 2 decimal places.
<span>1.
Find the two perfect square numbers it lies between.
</span>
<span><span>Solution:
</span><span>32
= 9 and 42 = 16, so
lies between 3 and 4.</span></span>
<span>2.
Divide 10 by 3. 10/3 = 3.33 (you can round off your answer)</span>
<span>3.
Average 3.33 and 3. (3.33 + 3)/2 = 3.1667</span>
<span>Repeat
step 2: 10/3.1667 = 3.1579
Repeat step 3: Average 3.1579 and 3.1667. (3.1579 + 3.1667)/2 = 3.1623</span>
<span>Try
the answer --> Is 3.1623 squared equal to 10? 3.1623 x 3.1623 =
10.0001</span>
If
this is accurate enough for you, you can stop! Otherwise, you can repeat steps
2 and 3.
</span>
<span>
<span><span>
<span> </span></span></span></span>