Only one triangle possible with angle 38.2° at C.
According to the given statement
we have to seek out that the measurement of m with the help of the a and c.
Then for this purpose, we all know that the
The ambiguous case occurs when one uses the law of sines to see missing measures of a triangle when given two sides and an angle opposite one in every of those angles (SSA).
According to the this law
The equation become
35/sin(60) = 25/sinC
sinC = 0.6185895741
C = 38.2, 141.8
Since 141.8+60 = 201.8 > 180
It will not form a triangle.
So, only 1 triangle possible with angle 38.2° at C
Learn more about ambiguous case here
brainly.com/question/4372174
#SPJ1
Disclaimer: This question was incomplete. Please find the full content below.
Question:
Law of Sines and the Ambiguous Case.
In ∆ ABC, a =35, c = 25, and m < A = 60*
How many distinct triangles can be drawn given these measurements?