Answer:
the order of importance must be b e a f c
Explanation:
Modern theories indicate that the moon was formed by the collision of a bad plant with the Earth during its initial cooling period, due to which part of the earth's material was volatilized and as a ring of remains that eventually consolidated in Moon.
Based on the aforementioned, let's analyze the statements in order of importance
b) True. Since the moon is material evaporated from Earth, its compassion is similar
e) True. If the moon is material volatilized from the earth it must train a finite receding speed
a) True. The solar system was full of small bodies in erratic orbits that wander between and with larger bodies
f) False. The moon's rotation and translation are equal has no relation to its formation phase
c) false. The amount of vaporized material on the moon is large
Therefore, the order of importance must be
b e a f c
Answer:
The amount of work done required to stretch spring by additional 4 cm is 64 J.
Explanation:
The energy used for stretching spring is given by the relation :
.......(1)
Here k is spring constant and x is the displacement of spring from its equilibrium position.
For stretch spring by 2.0 cm or 0.02 m, we need 8.0 J of energy. Hence, substitute the suitable values in equation (1).

k = 4 x 10⁴ N/m
Energy needed to stretch a spring by 6.0 cm can be determine by the equation (1).
Substitute 0.06 m for x and 4 x 10⁴ N/m for k in equation (1).

E = 72 J
But we already have 8.0 J. So, the extra energy needed to stretch spring by additional 4 cm is :
E = ( 72 - 8 ) J = 64 J
Answer:
It is characterized by fast, quick passes down the court and using more players on the attack than the opposition has for their defense. Slower, more deliberate play characterizes the slow-break style. This technique calls for more thoughtful action; players maneuver carefully in order to shoot in this type of offense.
Answer:
Its initial position was 471 m.
Explanation:
We have,
Final position of the object is 327 m
Displacement of the object is -144 m
It is required to find its initial position. The difference of final and initial position is equal to the displacement of the object. So,

So, its initial position was 471 m.