The angular speed can be solve using the formula:
w = v / r
where w is the angular speed
v is the linear velocity
r is the radius of the object
w = ( 5 m / s ) / ( 5 cm ) ( 1 m / 100 cm )
w = 100 per second
Answer:
2633.7 s
Explanation:
From the question,
Heat lost by the water heater = Heat gained by the water
Applying,
P = cm(t₂-t₁)/t.................. Equation 1
Where P = power of the heat, c = specific heat capacity of water, m = mass of water, t₁ = initial temperature, t₂ = final temperature, t = time
make t the subject of the equation
t = cm(t₂-t₁)/P.............. Equation 2
From the question,
Given: c = 4190 J/kgK, P = 3.5 kW = 3500 W, m = 40 kg, t₁ = 20°C, t₂ = 75°C
Substitute these values into equation 2
t = 4190×40(75-20)/3500
t = 9218000/3500
t = 2633.7 s
Answer:
42.417 cm³
Explanation:
The formula to find the volume of a cone is :
V =
× π r² h
Here,
r ⇒ radius ⇒ 3 cm
h ⇒ height ⇒ 4.5 cm
<u>Let us find it now.</u>
V =
× π r² h
V =
× π × 3 × 3 × 4.5
V =
× π × 9 × 4.5
V =
× π × 9 × 4.5
V =
× π × 40.5
V =
× 3.142 × 40.5
V =
× 127.251
V = <u>42.417 cm³</u>
Answer:
C) The restoring force
Explanation:
Hooke's Law states that the restoring force acting on a spring is given by the equation:

where
k is the spring constant
x is the displacement of the spring from its equilibrium position
The negative sign in the equation tells the direction of the restoring force. In fact, this force tends to bring the spring back to its equilibrium position: so, the force is always in opposite direction to the displacement.
This means that when the spring is stretched to the right, the restoring force tends to bring it back to the left, to the equibrium position; if the spring is compressed to the left, the restoring force tends to bring it back to the right, to the equilibrium position.
So the correct option is
C) The restoring force