The elevation in reservoir at the rate of flow using is 03m/s is 114m.
The Reynolds range is the ratio of inertial forces to viscous forces. The Reynolds variety is a dimensionless variety used to categorize the fluids structures in which the impact of viscosity is crucial in controlling the velocities or the flow sample of a fluid.
The reason of the Reynolds number is to get a few experience of the relationship in fluid glide between inertial forces (this is those that maintain going by using Newton's first law – an item in motion stays in movement) and viscous forces, this is people who cause the fluid to come back to a forestall because of the viscosity of the fluid.
calculation,
Let L = 100 m pipe
L1 = 150 m pipe
H f = friction losses
Using Reynolds number, relative roughness, friction co- effiicients and friction losses
Substitute the value in equation
Z = 110= 0.48= 3.54
Z = 114m
Therefore water surface elevation at reservoir is 114 meter.
Learn more about rate of flow here:-brainly.com/question/21630019
#SPJ4
Answer:
The correct option is H
Explanation:
From the question we are told that
The index of refraction of coating is
The index of refraction of material is 
Generally the condition for constructive for a thin film interference is mathematically represented
![2 * t = [ m + \frac{1}{2}] \frac{\lambda}{n_1 }](https://tex.z-dn.net/?f=2%20%2A%20%20t%20%20%3D%20%5B%20m%20%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5D%20%5Cfrac%7B%5Clambda%7D%7Bn_1%20%7D)
Here t represents the thickness
For minimum thickness m = 0
So

=> 
The focal point of a concave mirror is halfway along the radius, therefore the radius would be 2•16= 32 cm
Answer:
Direction of ship: 9.45° West of North
Ship's relative speed: 7.87m/s
Explanation:
A. Direction of ship: since horizontal of the velocity of boat relative to the ground is 0
Vx=0
Therefore, -VsSin∅+VcCos∅40°
Sin∅ = Vc/Vs × Cos 40°
Sin∅ = 1.5/7 ×Cos40°
Sin∅= 0.164
∅= Sin-¹ (0.164)
∅= 9.45° W of N
B. Ship's relative speed:
Vy= VsCos∅ + Vcsin40°
= 7Cos9.45° + 1.5sin40°
= 7×0.986 + 1.5×0.642
= 7.865
= 7.87m/s
Radar waves are the waves with the lowest energy.