Answer:
<em>The mass of the object is 745000 units of the sun</em>
Explanation:
We know that the centripetal force with which the stars orbit the object is represented as
=
and this centripetal force is also proportional to
=
where
m is the mass of the stars
M is the mass of the object
v is the velocity of the stars = 10^6 m/s
r is the distance between the stars and the object = 10^14 m
k is the gravitational constant = 6.67 × 10^-11 m^3 kg^-1 s^-2
We can equate the two centripetal force equations to give
=
which reduces to
=
and then finally
M =
substituting values, we have
M = = 1.49 x 10^36 kg
If the mass of the sun is 2 x 10^30 kg
then, the mass of the the object in units of the mass of the sun is
==> (1.49 x 10^36)/(2 x 10^30) = <em>745000 units of sun</em>
Newtons are used to measure force
Answer:
The density ρ of metal block is 8.92g/cm³
So from the given density table this corresponds to copper which has density of 8.92(g/mL)
Explanation:
Oh yeah, I got the correct unit update,
Now this problem bothers on the density of substances
We know that the density of a substance is expressed as
Density ρ= mass/ volume
Given data
Mass of metal block m= 62.44g
Volume of metal block v= 7 cm³
Hence we can find the density of the metal block by plugging in our data into the expression for density
ρ of metal block = 62.44/7
ρ of metal block = 8.92g/cm³
The block is a copper block
Answer:
a. True
Explanation:
Illumination distance is the distance, up to which the light of the vehicle can reach. Hence, it is a maximum distance from the, that driver can see.
Stopping distance is the minimum distance required by the car to stop after brakes are applied.
So, in order to avoid any accident the illumination distance must be greater than the stopping distance. So, the driver can stop the vehicle in time, when he sees something in front of it.
Since, the stopping distance in this case is two or three times longer than illumination distance. Therefore, low beam light does not provide enough visibility in high speed driving situations.
Hence, the correct option is:
<u>a. True</u>
<u></u>