Answer:
Option B. 6.25 J/S
Explanation:
Data obtained from the question include:
t (time) = 2secs
F (force) = 50N
d (distance) = 0.25m
P (power) =?
The power can be obtained by using the formula P = workdone/time.
P = workdone / time
P = (50 x 0.25)/ 2
P = 6.25J/s
<span>Which group in the periodic table is known as salt formers?
The correct option is the last one: Halogen family.
</span><span>
You can find the halogen or "</span>salt formers" in the group 17 of the periodic table. These are:
- Fluorine.
-Chlorine.
- Bromine.
- Iodine.
- Astatine.
All of them are non-metallic elements and they have 7 electrons.
Answer:
The distance between the ships is 87.84 km.
Explanation:
Given that,
Angle of first ship= 40°
Speed of first ship = 18 knots
Angle of second ship= 130°
Speed of second ship = 26 knots
We need to calculate the resultant velocity
Using cosine rule

Put the value into the formula




We need to calculate the distance between the ships

Put the value into the formula


Hence, The distance between the ships is 87.84 km.
I am pretty sure that the only statement which is true for particles of the medium of an earthquake P-wave is being shown in the option : b)vibrate parallel to the wave, forming compressions and rarefactions. As you know, it can be formed in two ways : from alternating compressions and rarefactions or primary wave. I bet you will agree with me.
Answer:
D. Top is emission; bottom absorption.
Explanation:
Emission and spectrum of elements are due to the element absorbing or emitting wavelength of e-m energy. Elementary particles of elements can absorb energy from a ground state to enter an excited state, creating an absorption spectrum, or they can lose energy and fall back to a lower energy state, creating an emission spectrum. A simple rule to differentiate between an emission and an absorption spectrum is that: "all absorbed wavelength is emitted, but not all emitted wavelength is absorbed."
From the image, the lines indicates wavelengths. We can see that all of the wavelengths of the bottom absorption spectrum coincides with some of the wavelength of the upper emission wavelengths.