There are 2 tangent lines that pass through the point

and

Explanation:
Given:

The point-slope form of the equation of a line tells us that the form of the tangent lines must be:
![[1]](https://tex.z-dn.net/?f=%5B1%5D)
For the lines to be tangent to the curve, we must substitute the first derivative of the curve for
:



![[2]](https://tex.z-dn.net/?f=%5B2%5D)
Substitute equation [2] into equation [1]:
![[1.1]](https://tex.z-dn.net/?f=%5B1.1%5D)
Because the line must touch the curve, we may substitute 

Solve for x:




± 
±
<em> </em>

There are 2 tangent lines.

and

I think the answer would be 8+9
Answer:
a)17.92
b) 16.83 .... 21.17
Step-by-step explanation:
ρ→ z
0.14 = -1.080319341
-1.080 = (x - 19)/1 = 17.92
~~~~~~~~~~~~~~~~~~
3% / 2 = 1.5%
1.5% - 98.5%
ρ→ z
0.015 = -2.170090378 .... -2.17 = (x-19) =16.83
0.985 = 2.170090378 .... 2.17 = (x-19) =21.17
Answer:
y = -
x + 7
Step-by-step explanation:
Ambos puntos (3, 5) y (6, 3) están en esta línea.