You have shared the situation (problem), except for the directions: What are you supposed to do here? I can only make a educated guesses. See below:
Note that if <span>ax^2+bx+5=0 then it appears that c = 5 (a rational number).
Note that for simplicity's sake, we need to assume that the "two distinct zeros" are real numbers, not imaginary or complex numbers. If this is the case, then the discriminant, b^2 - 4(a)(c), must be positive. Since c = 5,
b^2 - 4(a)(5) > 0, or b^2 - 20a > 0.
Note that if the quadratic has two distinct zeros, which we'll call "d" and "e," then
(x-d) and (x-e) are factors of ax^2 + bx + 5 = 0, and that because of this fact,
- b plus sqrt( b^2 - 20a )
d = ------------------------------------
2a
and
</span> - b minus sqrt( b^2 - 20a )
e = ------------------------------------
2a
Some (or perhaps all) of these facts may help us find the values of "a" and "b." Before going into that, however, I'm asking you to share the rest of the problem statement. What, specificallyi, were you asked to do here?
Answer:
p = 8/25
Step-by-step explanation:
500 - 340 = 160 girls
p = 160/500
p = 8/25
Answer:
Step-by-step explanation:
It can be convenient to compute the length of the hypotenuse of this triangle (AC). The Pythagorean theorem tells you ...
AC^2 = AB^2 + CB^2
AC^2 = 4^2 + 3^2 = 16 + 9 = 25
AC = √25 = 5
The altitude divides ∆ABC into similar triangles ∆AHB and ∆BHC. The scale factor for ∆AHB is ...
scale factor ∆ABC to ∆AHB = AB/AC = 4/5 = 0.8
And the scale factor to ∆BHC is ...
scale factor ∆ABC to ∆BHC = BC/AC = 3/5 = 0.6
Then the side AH is 0.8·AB = 0.8·4 = 3.2
And the side CH is 0.6·BC = 0.6·3 = 1.8
These two side lengths should add to the length AC = 5, and they do.
The remaining side BH can be found from either scale factor:
BH = AB·0.6 = BC·0.8 = 4·0.6 = 3·0.8 = 2.4
_____
The sides of interest are ...
AH = 3.2
CH = 1.8
BH = 2.4
Answer: A i think
Step-by-step explanation:
Answer:
<h2>x = 152°</h2><h2>________________</h2>
<u>Step-by-step explanation:</u>
<h3>Δx = 85° + 67°</h3><h3>Δx = 152°</h3><h2>________________</h2><h2>FOLLOW ME</h2>