Answer:
The final volume of the gas is 36.1 L.
Explanation:
Given:
Initial pressure of the gas is, 
Final pressure of the gas is, 
Initial volume of the gas is, 
Final volume of the gas is, 
Here, we shall use Boyle's Law which states that for a process under constant temperature, the pressure of the gas changes inversely with the change in volume.
Here, the pressure is increased. So, the volume of the gas is decreased.
Therefore, as per Boyle's Law:

So, the final volume of the gas is 36.1 L.
Fe2O3 + 2Al ---> Al2O3 + 2Fe
Mole ratio Fe2O3 : Al = 1:2
No. of moles of Fe2O3 = Mass/RMM = 250 / (55.8 * 2 + 16 * 3) = 1.56641604 moles
No. of moles of Al = 150/27 = 5.555555555 moles.
Mole ratio 1 : 2. 1.56641604 * 2 = 3.13283208 moles of Al, but you have 5.555555555 moles of Al. So Al is in excess. All of it won't react.
So take the Fe2O3 and Fe ratio to calculate the mass of iron metal that can be prepared.
RMM of Fe2O3 / Mass of Fe2O3 = RMM of 2Fe / Mass of Fe 159.6 / 250 = 111.6 / x x = 174.8 g of Fe
Answer:
The main use for hydrogen sulfide is in the production of sulfuric acid and elemental sulfur. ... H2S is used to prepare the inorganic sulfides you need to make those products. As a reagent and intermediate, hydrogen sulfide is beneficial because it can prepare other types of reduced sulfur compounds.
Hello!
Ok so for this problem we use the ideal gas law of PV=nRT and I take it that the scientist needs to store 0.400 moles of gas and not miles.
So if we have
n=0.400mol
V=0.200L
T= 23degC= 273k+23c=296k
R=ideal gas constant= 0.0821 L*atm/mol*k
So now we rearrange equation for pressure(P)
P=nRT/V
P=((0.400mol)*(0.0821 L*atm/mol*k)*(296k))/(0.200L) = 48.6 atm of pressure
Hope this helps you understand the concept and how to solve yourself in the future!! Any questions, please feel free to ask!! Thank you kindly!!!
Answer:
The units of SI: meter, kilogram, second, Kelvin
Explanation:
(a) The length of a marathon race: meter (m)
(b) The mass of an automobile
: kilogram (kg)
(c) The volume of a swimming pool
: cubic meter (m^3)
(d) The speed of an airplane
: (m/s)
(e) The density of gold
: (kg/m^3)
(f) The area of a football field
: square meter (m^2)
(g) The maximum temperature at the South Pole on April 1,1913: Kelvin (K)