Answer:
A) chlorine
Explanation:
To solve this question we can use:
PV = nRT
In order to solve the moles of the gas. With the moles and the mass we can find the molar mass of the gas to have an idea of its identy:
PV = nRT
PV / RT = n
<em>Where P is pressure: 603mmHg * (1atm / 760mmHg) = 0.7934atm</em>
<em>V = 100mL = 0.100L</em>
<em>R is gas constant = 0.082atmL/molK</em>
<em>T is absolute temperature = 14°C + 273.15 = 287.15K</em>
0.7934atm*0.100L / 0.082atmL/molK*287.15K = n
3.37x10⁻³ moles of the gas
In 0.239g. The molar mass is:
0.239g / 3.37x10⁻³ moles = 70.9g/mol
The gas with this molar mass is Chlorine, Cl₂:
<h3>A) chlorine
</h3><h3 />
Answer: The isotope is represented as 
Explanation:
General representation of an element is given as:
where,
Z represents Atomic number
A represents Mass number
X represents the symbol of an element
Atomic number is defined as the number of protons or number of electrons that are present in an atom.
Atomic number = Number of electrons = Number of protons = 7 (for nitrogen)
Mass number is defined as the sum of number of protons and neutrons that are present in an atom.
Mass number = Number of protons + Number of neutrons = 7+8 = 15
Thus the isotope is represented as 
Answer:
The correct answer is Option C (E1) and Option B (carbocation).
Explanation:
- Intramolecular immunity idols are considered as that of the formation mechanism with E1 responses or reactivity.
- Reactants with E1 were indeed obligations of both parties, meaning that an E1 reaction was conducted thru all the two stages known as ionization but rather deprotonation. Involves the absence of either an aromatic ring, a carbocation has been generated throughout the ionization solution.
Some other possibilities offered aren't relevant to the procedure outlined. So the above alternative is accurate.
Answer:
See explanation
Explanation:
In a chemical reaction, a particular reaction path may be favoured due to the fact that it is energetically more favourable(lower energy sigma complex is formed).
The more the resonance structures produced in a particular reaction pathway, the more energetically favourable it is.
In the chlorination of bromobenzene, ortho attack and para attack are preferred because each of these pathways involves a sigma complex with__4________resonance structures. Attack at the meta position involves formation of a sigma complex with only____3_______ resonance structures. The reaction will proceed more rapidly via the_____lower_______ energy sigma complex, so attack takes place at the ortho and para positions in preference to the meta position.