Answer:
Area of remaining cardboard is 224y^2 cm^2
a + b = 226
Step-by-step explanation:
The complete and correct question is;
A rectangular piece of cardboard is 16y cm long and 23y cm wide. Four square pieces of cardboard whose sides are 6y cm each are cut away from the corners. Find the area of the remaining cardboard. Express your answer in terms of y. If your answer is ay^b, then what is a+b?
Solution;
Mathematically, at any point in time
Area of the cardboard is length * width
Here, area of the total cardboard is 16y * 23y = 368y^2 cm^2
Area of the cuts;
= 4 * (6y)^2 = 4 * 36y^2 = 144y^2
The area of the remaining cardboard will be :
368y^2-144y^2
= 224y^2
Compare this with;
ay^b
a = 224, and b = 2
a + b = 224 + 2 = 226
Answer:
Step-by-step explanation:
Given the equation y=-2x+1 and given another equation y=mx+b in order for us to have no solution we must guarantee that both lines do not intersect. Recall that m is the slope of the second equation and b the y-intercept. To guarantee that both lines don't intersect, they must be parallel. To have this result, we must have that they have the same slope but different y intercept. That is take m = -2 and b any value different to +1. For example, the b = 6. So
y = -2x+6 = -2(x-3) is another equation that gives no solution to the system.
Nope. Perimeter = sum of all sides
P = 20 + 11 + 20 + 11 = 62 and not 64
So, it is not possible.
It would be 400+700h=1800