To find the hypotenuse of a right triangle you can use the Pythagorean theorem. (a² + b² = c²) Using the measurements provided we can solve like this.
Both a² & b² = 7²
7 x 7 = 49
49 + 49 = 98
Now we need to find the square root of 98 (c²) to get our answer.
9.9 x 9.9 = 98.01 or about 98
The measurements for the tirangle are 7 units, 7 units, and 9.9 units.
Hope this helps!
tan²(<em>θ</em>) - sin²(<em>θ</em>) = sin²(<em>θ</em>)/cos²(<em>θ</em>) - sin²(<em>θ</em>)
-- because tan(<em>θ</em>) = sin(<em>θ</em>)/cos(<em>θ</em>) by definition of tangent --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - 1)
-- we pull out the common factor of sin²(<em>θ</em>) from both terms --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - cos²(<em>θ</em>)/cos²(<em>θ</em>))
-- because <em>x</em>/<em>x</em> = 1 (so long as <em>x</em> ≠ 0) --
… = sin²(<em>θ</em>) ((1 - cos²(<em>θ</em>))/cos²(<em>θ</em>))
-- we simply combine the fractions, which we can do because of the common denominator of cos²(<em>θ</em>) --
… = sin²(<em>θ</em>) (sin²(<em>θ</em>)/cos²(<em>θ</em>))
-- due to the Pythagorean identity, sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1 --
… = sin²(<em>θ</em>) tan²(<em>θ</em>)
-- again, by definition of tan(<em>θ</em>) --
I think the answer is
70/5=14
14*4=56
John is 56
Sharon is 14
The answer is -3/5y
alternative form is -0.6